Test results for the 23 problems in " $6.3 .1(c+d x)^{\wedge} m(a+b \text { tanh })^{\wedge} n . t x t "$
Problem 1: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{3} \tanh (f x+e) \mathrm{d} x
$$

Optimal(type 4, 109 leaves, 6 steps):

Result (type 4, 393 leaves):

$$
\begin{aligned}
& -c d^{2} x^{3}-\frac{2 c^{3} \ln \left(\mathrm{e}^{f x+e}\right)}{f}+\frac{c^{3} \ln \left(1+\mathrm{e}^{2 f x+2 e}\right)}{f}-\frac{3 d^{3} e^{4}}{2 f^{4}}+\frac{3 c d^{2} \operatorname{polylog}\left(2,-\mathrm{e}^{2 f x+2 e}\right) x}{f^{2}}+\frac{3 c^{2} d \ln \left(1+\mathrm{e}^{2 f x+2 e}\right) x}{f}+\frac{6 d e c^{2} \ln \left(\mathrm{e}^{f x+e}\right)}{f^{2}} \\
& -\frac{6 d^{2} e^{2} c \ln \left(\mathrm{e}^{f x+e}\right)}{f^{3}}+\frac{6 c d^{2} e^{2} x}{f^{2}}-\frac{6 c^{2} d e x}{f}+\frac{3 c d^{2} \ln \left(1+\mathrm{e}^{2 f x+2 e}\right) x^{2}}{f}+c^{3} x-\frac{d^{3} x^{4}}{4}-\frac{2 d^{3} e^{3} x}{f^{3}}+\frac{4 c d^{2} e^{3}}{f^{3}}-\frac{3 c^{2} d e^{2}}{f^{2}}+\frac{d^{3} \ln \left(1+\mathrm{e}^{2 f x+2 e}\right) x^{3}}{f} \\
& +\frac{3 d^{3} \operatorname{polylog}\left(2,-\mathrm{e}^{2 f x+2 e}\right) x^{2}}{2 f^{2}}-\frac{3 d^{3} \operatorname{polylog}\left(3,-\mathrm{e}^{2 f x+2 e}\right) x}{2 f^{3}}-\frac{3 c d^{2} \operatorname{polylog}\left(3,-\mathrm{e}^{2 f x+2 e}\right)}{2 f^{3}}+\frac{3 c^{2} d \operatorname{polylog}\left(2,-\mathrm{e}^{2 f x+2 e}\right)}{2 f^{2}}+\frac{2 d^{3} e^{3} \ln \left(\mathrm{e}^{f x+e}\right)}{f^{4}} \\
& \\
& -\frac{3 c^{2} d x^{2}}{2}+\frac{3 d^{3} \operatorname{polylog}\left(4,-\mathrm{e}^{2 f x+2 e}\right)}{4 f^{4}}
\end{aligned}
$$

Problem 2: Result more than twice size of optimal antiderivative.

$$
\int(d x+c) \tanh (f x+e) \mathrm{d} x
$$

Optimal(type 4, 53 leaves, 4 steps):

$$
-\frac{(d x+c)^{2}}{2 d}+\frac{(d x+c) \ln \left(1+\mathrm{e}^{2 f x+2 e}\right)}{f}+\frac{d \operatorname{poly} \log \left(2,-\mathrm{e}^{2 f x+2 e}\right)}{2 f^{2}}
$$

Result(type 4, 108 leaves):

$$
-\frac{d x^{2}}{2}+c x+\frac{c \ln \left(1+\mathrm{e}^{2 f x+2 e}\right)}{f}-\frac{2 c \ln \left(\mathrm{e}^{f x+e}\right)}{f}-\frac{2 d e x}{f}-\frac{d e^{2}}{f^{2}}+\frac{d \ln \left(1+\mathrm{e}^{2 f x+2 e}\right) x}{f}+\frac{d \operatorname{poly} \log \left(2,-\mathrm{e}^{2 f x+2 e}\right)}{2 f^{2}}+\frac{2 d e \ln \left(\mathrm{e}^{f x+e}\right)}{f^{2}}
$$

Problem 3: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{2} \tanh (f x+e)^{2} \mathrm{~d} x
$$

Optimal(type 4, 86 leaves, 6 steps):

$$
-\frac{(d x+c)^{2}}{f}+\frac{(d x+c)^{3}}{3 d}+\frac{2 d(d x+c) \ln \left(1+\mathrm{e}^{2 f x+2 e}\right)}{f^{2}}+\frac{d^{2} \operatorname{polylog}\left(2,-\mathrm{e}^{2 f x+2 e}\right)}{f^{3}}-\frac{(d x+c)^{2} \tanh (f x+e)}{f}
$$

Result(type 4, 176 leaves):

$$
\begin{aligned}
& \frac{d^{2} x^{3}}{3}+c d x^{2}+c^{2} x+\frac{2\left(d^{2} x^{2}+2 c d x+c^{2}\right)}{f\left(1+\mathrm{e}^{2 f x+2 e}\right)}+\frac{2 d c \ln \left(1+\mathrm{e}^{2 f x+2 e}\right)}{f^{2}}-\frac{4 d c \ln \left(\mathrm{e}^{f x+e}\right)}{f^{2}}-\frac{2 d^{2} x^{2}}{f}-\frac{4 d^{2} e x}{f^{2}}-\frac{2 d^{2} e^{2}}{f^{3}}+\frac{2 d^{2} \ln \left(1+\mathrm{e}^{2 f x+2 e}\right) x}{f^{2}} \\
& \quad+\frac{d^{2} \operatorname{polylog}\left(2,-\mathrm{e}^{2 f x+2 e}\right)}{f^{3}}+\frac{4 d^{2} e \ln \left(\mathrm{e}^{f x+e}\right)}{f^{3}}
\end{aligned}
$$

Problem 6: Unable to integrate problem.

$$
\int(d x+c)(b \tanh (f x+e))^{5 / 2} \mathrm{~d} x
$$

Optimal(type 4, 1108 leaves, 44 steps):

$$
\begin{aligned}
& \frac{2 b^{5 / 2} d \arctan \left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{b}}\right)}{3 f^{2}} \\
& \frac{(-b)^{5 / 2}(d x+c) \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right)}{f} \\
& -\frac{(-b)^{5 / 2} d \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right)^{2}}{2 f^{2}} \\
& +\frac{2 b^{5 / 2} d \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{b}}\right)}{3 f^{2}}+\frac{b^{5 / 2}(d x+c) \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{b}}\right)}{f}+\frac{b^{5 / 2} d \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{b}}\right)^{2}}{2 f^{2}} \\
& -\frac{b^{5 / 2} d \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{b}}\right) \ln \left(\frac{2 \sqrt{b}}{\sqrt{b}-\sqrt{b \tanh (f x+e)}}\right)}{f^{2}}+\frac{b^{5 / 2} d \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{b}}\right) \ln \left(\frac{2 \sqrt{b}}{\sqrt{b}+\sqrt{b \tanh (f x+e)}}\right)}{f^{2}} \\
& -\frac{b^{5 / 2} d \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{b}}\right) \ln \left(\frac{2 \sqrt{b}(\sqrt{-b}-\sqrt{b \tanh (f x+e)})}{(\sqrt{-b}-\sqrt{b})(\sqrt{b}+\sqrt{b \tanh (f x+e)})}\right)}{2 f^{2}} \\
& -\frac{b^{5 / 2} d \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{b}}\right) \ln \left(\frac{2 \sqrt{b}(\sqrt{-b}+\sqrt{b \tanh (f x+e)})}{(\sqrt{-b}+\sqrt{b})(\sqrt{b}+\sqrt{b \tanh (f x+e)})}\right)}{2 f^{2}} \\
& +\frac{(-b)^{5 / 2} d \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right) \ln \left(\frac{2}{1-\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}}\right)}{f^{2}} \\
& -\frac{(-b)^{5 / 2} d \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right) \ln \left(\frac{2(\sqrt{b}-\sqrt{b \tanh (f x+e)})}{(\sqrt{-b}+\sqrt{b})\left(1-\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right)}\right)}{2 f^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{(-b)^{5 / 2} d \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right) \ln \left(-\frac{2(\sqrt{b}+\sqrt{b \tanh (f x+e)})}{(\sqrt{-b}-\sqrt{b})\left(1-\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right)}\right)}{2 f^{2}} \\
& -\frac{(-b)^{5 / 2} d \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right) \ln \left(\frac{2}{1+\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}}\right)}{f^{2}}-\frac{b^{5 / 2} d \operatorname{polylog}\left(2,1-\frac{2 \sqrt{b}}{\sqrt{b}-\sqrt{b \tanh (f x+e)}}\right)}{2 f^{2}} \\
& -\frac{b^{5 / 2} d \operatorname{polylog}\left(2,1-\frac{2 \sqrt{b}}{\sqrt{b}+\sqrt{b \tanh (f x+e)}}\right)}{2 f^{2}}+\frac{b^{5 / 2} d \operatorname{polylog}\left(2,1-\frac{2 \sqrt{b}(\sqrt{-b}-\sqrt{b \tanh (f x+e)})}{(\sqrt{-b}-\sqrt{b})(\sqrt{b}+\sqrt{b \tanh (f x+e)})}\right)}{4 f^{2}} \\
& +\frac{b^{5 / 2} d \operatorname{polylog}\left(2,1-\frac{2 \sqrt{b}(\sqrt{-b}+\sqrt{b \tanh (f x+e)})}{(\sqrt{-b}+\sqrt{b})(\sqrt{b}+\sqrt{b \tanh (f x+e)})}\right)}{4 f^{2}}+\frac{(-b)^{5 / 2} d \operatorname{polylog}\left(2,1-\frac{2}{1-\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}}\right)}{2 f^{2}} \\
& -\frac{(-b)^{5 / 2} d \operatorname{polylog}\left(2,1-\frac{2(\sqrt{b}-\sqrt{b \tanh (f x+e)})}{(\sqrt{-b}+\sqrt{b})\left(1-\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right)}\right)}{4 f^{2}}-\frac{(-b)^{5 / 2} d \operatorname{polylog}\left(2,1+\frac{2(\sqrt{b}+\sqrt{b \tanh (f x+e)})}{(\sqrt{-b}-\sqrt{b})\left(1-\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right)}\right)}{4 f^{2}} \\
& +\frac{(-b)^{5 / 2} d \operatorname{polylog}\left(2,1-\frac{2}{1+\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}}\right)}{2 f^{2}}-\frac{4 b^{2} d \sqrt{b \tanh (f x+e)}}{3 f^{2}}-\frac{2 b(d x+c)(b \tanh (f x+e))^{3 / 2}}{3 f}
\end{aligned}
$$

Result(type 8, 18 leaves):

$$
\int(d x+c)(b \tanh (f x+e))^{5 / 2} \mathrm{~d} x
$$

Problem 7: Unable to integrate problem.

$$
\int(d x+c)(b \tanh (f x+e))^{3 / 2} \mathrm{~d} x
$$

Optimal(type 4, 1089 leaves, 43 steps):

$-\frac{(-b)^{3 / 2} d \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right) \ln \left(\frac{2(\sqrt{b}-\sqrt{b \tanh (f x+e)})}{(\sqrt{-b}+\sqrt{b})\left(1-\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right)}\right)}{2 f^{2}}$
$-\frac{(-b)^{3 / 2} d \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right) \ln \left(-\frac{2(\sqrt{b}+\sqrt{b \tanh (f x+e)})}{(\sqrt{-b}-\sqrt{b})\left(1-\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right)}\right)}{2 f^{2}}$
$-\frac{(-b)^{3 / 2} d \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right) \ln \left(\frac{2}{1+\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}}\right)}{f^{2}}-\frac{b^{3 / 2} d \operatorname{polylog}\left(2,1-\frac{2 \sqrt{b}}{\sqrt{b}-\sqrt{b \tanh (f x+e)}}\right)}{2 f^{2}}$
$-\frac{b^{3 / 2} d \operatorname{polylog}\left(2,1-\frac{2 \sqrt{b}}{\sqrt{b}+\sqrt{b \tanh (f x+e)}}\right)}{2 f^{2}}+\frac{b^{3 / 2} d \operatorname{polylog}\left(2,1-\frac{2 \sqrt{b}(\sqrt{-b}-\sqrt{b \tanh (f x+e)})}{(\sqrt{-b}-\sqrt{b})(\sqrt{b}+\sqrt{b \tanh (f x+e)})}\right)}{4 f^{2}}$

$$
\begin{aligned}
& +\frac{b^{3 / 2} d \operatorname{polylog}\left(2,1-\frac{2 \sqrt{b}(\sqrt{-b}+\sqrt{b \tanh (f x+e)})}{(\sqrt{-b}+\sqrt{b})(\sqrt{b}+\sqrt{b \tanh (f x+e)})}\right)}{4 f^{2}}+\frac{(-b)^{3 / 2} d \operatorname{polylog}\left(2,1-\frac{2}{\left.1-\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right)}\right.}{2 f^{2}} \\
& -\frac{(-b)^{3 / 2} d \operatorname{polylog}\left(2,1-\frac{2(\sqrt{b}-\sqrt{b \tanh (f x+e)})}{(\sqrt{-b}+\sqrt{b})\left(1-\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right)}\right)}{} \\
& \frac{(-b)^{3 / 2} d \text { polylog }\left(2,1+\frac{2(\sqrt{b}+\sqrt{b \tanh (f x+e)})}{(\sqrt{-b}-\sqrt{b})\left(1-\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right)}\right)}{4 f^{2}} \\
& +\frac{(-b)^{3 / 2} d \text { polylog }\left(2,1-\frac{2}{1+\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}}\right)}{2 f^{2}}-\frac{2 b(d x+c) \sqrt{b \tanh (f x+e)}}{f}
\end{aligned}
$$

Result(type 8, 18 leaves):

$$
\int(d x+c)(b \tanh (f x+e))^{3 / 2} \mathrm{~d} x
$$

Problem 8: Unable to integrate problem.

$$
\int(d x+c) \sqrt{b \tanh (f x+e)} \mathrm{d} x
$$

Optimal(type 4, 1020 leaves, 37 steps):

$$
\begin{aligned}
& -\frac{(d x+c) \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right) \sqrt{-b}}{f}-\frac{d \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right)^{2} \sqrt{-b}}{2 f^{2}}+\frac{d \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right) \ln \left(\frac{\sqrt{x}}{\left.1-\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right) \sqrt{-b}}\right.}{f^{2}} \\
& -\frac{d \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right) \ln \left(\frac{2(\sqrt{b}-\sqrt{b \tanh (f x+e)})}{(\sqrt{-b}+\sqrt{b})\left(1-\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right)}\right) \sqrt{-b}}{2 f^{2}} \\
& \frac{d \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right) \ln \left(-\frac{2(\sqrt{b}+\sqrt{b \tanh (f x+e)})}{(\sqrt{-b}-\sqrt{b})\left(1-\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right)}\right) \sqrt{-b}}{2 f^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\left.d \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right) \ln \left(\frac{2}{1+\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}}\right) \sqrt{-b}\right)}{f^{2}}+\frac{d \operatorname{polylog}\left(2,1-\frac{2}{1-\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}}\right) \sqrt{-b}}{2 f^{2}} \\
& -\frac{\left.d \operatorname{polylog}\left(2,1-\frac{2(\sqrt{b}-\sqrt{b \tanh (f x+e)})}{(\sqrt{-b}+\sqrt{b})\left(1-\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right)}\right) \sqrt{-b}\right) d \operatorname{polylog}\left(2,1+\frac{2(\sqrt{b}+\sqrt{b \tanh (f x+e)})}{4 f^{2}}-\frac{(\sqrt{-b}-\sqrt{b})\left(1-\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}\right)}{\sqrt{-b}}\right)}{4 f^{2}} \\
& +\frac{d \operatorname{polylog}\left(2,1-\frac{2}{1+\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{-b}}}\right)^{\sqrt{-b}}}{2 f^{2}}+\frac{(d x+c) \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{b}}\right) \sqrt{b}}{f}+\frac{d \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{b}}\right)^{2} \sqrt{b}}{2 f^{2}} \\
& -\frac{d \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{b}}\right) \ln \left(\frac{2 \sqrt{b}}{\sqrt{b}-\sqrt{b \tanh (f x+e)}}\right) \sqrt{b}}{f^{2}}+\frac{d \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{b}}\right) \ln \left(\frac{2 \sqrt{b}}{\sqrt{b}+\sqrt{b \tanh (f x+e)}}\right) \sqrt{b}}{f^{2}} \\
& \frac{d \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{b}}\right) \ln \left(\frac{2 \sqrt{b}(\sqrt{-b}-\sqrt{b \tanh (f x+e)})}{(\sqrt{-b}-\sqrt{b})(\sqrt{b}+\sqrt{b \tanh (f x+e)})}\right) \sqrt{b}}{2 f^{2}} \\
& -\frac{d \operatorname{arctanh}\left(\frac{\sqrt{b \tanh (f x+e)}}{\sqrt{b}}\right) \ln \left(\frac{2 \sqrt{b}(\sqrt{-b}+\sqrt{b \tanh (f x+e)})}{(\sqrt{-b}+\sqrt{b})(\sqrt{b}+\sqrt{b \tanh (f x+e)})}\right) \sqrt{b}}{2 f^{2}}-\frac{d \operatorname{polylog}\left(2,1-\frac{2 \sqrt{b}}{\sqrt{b}-\sqrt{b \tanh (f x+e)}}\right) \sqrt{b}}{2 f^{2}} \\
& -\frac{d \operatorname{polylog}\left(2,1-\frac{2 \sqrt{b}}{\sqrt{b}+\sqrt{b \tanh (f x+e)}}\right) \sqrt{b}}{2 f^{2}}+\frac{d \operatorname{polylog}\left(2,1-\frac{2 \sqrt{b}(\sqrt{-b}-\sqrt{b \tanh (f x+e)})}{(\sqrt{-b}-\sqrt{b})(\sqrt{b}+\sqrt{b \tanh (f x+e)})}\right) \sqrt{b}}{4 f^{2}} \\
& +\frac{d \operatorname{polylog}\left(2,1-\frac{2 \sqrt{b}(\sqrt{-b}+\sqrt{b \tanh (f x+e)})}{(\sqrt{-b}+\sqrt{b})(\sqrt{b}+\sqrt{b \tanh (f x+e)})}\right) \sqrt{b}}{4 f^{2}}
\end{aligned}
$$

Result(type 8, 18 leaves):

$$
\int(d x+c) \sqrt{b \tanh (f x+e)} \mathrm{d} x
$$

Problem 9: Unable to integrate problem.

$$
\int \frac{d x+c}{\sqrt{b \tanh (f x+e)}} \mathrm{d} x
$$

Optimal(type 4, 1020 leaves, 37 steps):

$$
\begin{aligned}
-\frac{d \operatorname{polylog}\left(2,1-\frac{2 \sqrt{b}}{\sqrt{b}+\sqrt{b \tanh (f x+e)}}\right)}{2 f^{2} \sqrt{b}}+\frac{d \operatorname{polylog}\left(2,1-\frac{2 \sqrt{b}(\sqrt{-b}-\sqrt{b \tanh (f x+e)})}{(\sqrt{-b}-\sqrt{b})(\sqrt{b}+\sqrt{b \tanh (f x+e)})}\right)}{4 f^{2} \sqrt{b}} \\
+\frac{d \operatorname{polylog}\left(2,1-\frac{2 \sqrt{b}(\sqrt{-b}+\sqrt{b \tanh (f x+e)})}{(\sqrt{-b}+\sqrt{b})(\sqrt{b}+\sqrt{b \tanh (f x+e)})}\right)}{4 f^{2} \sqrt{b}}
\end{aligned}
$$

Result(type 8, 18 leaves):

$$
\int \frac{d x+c}{\sqrt{b \tanh (f x+e)}} \mathrm{d} x
$$

Problem 19: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{2}(a+b \tanh (f x+e))^{2} \mathrm{~d} x
$$

Optimal(type 4, 205 leaves, 13 steps):

$$
\begin{array}{r}
-\frac{b^{2}(d x+c)^{2}}{f}+\frac{a^{2}(d x+c)^{3}}{3 d}-\frac{2 a b(d x+c)^{3}}{3 d}+\frac{b^{2}(d x+c)^{3}}{3 d}+\frac{2 b^{2} d(d x+c) \ln \left(1+\mathrm{e}^{2 f x+2 e}\right)}{f^{2}}+\frac{2 a b(d x+c)^{2} \ln \left(1+\mathrm{e}^{2 f x+2 e}\right)}{f} \\
+\frac{b^{2} d^{2} \operatorname{poly} \log \left(2,-\mathrm{e}^{2 f x+2 e}\right)}{f^{3}}+\frac{2 a b d(d x+c) \operatorname{polylog}\left(2,-\mathrm{e}^{2 f x+2 e}\right)}{f^{2}}-\frac{a b d^{2} \operatorname{polylog}\left(3,-\mathrm{e}^{2 f x+2 e}\right)}{f^{3}}-\frac{b^{2}(d x+c)^{2} \tanh (f x+e)}{f}
\end{array}
$$

Result(type 4, 509 leaves):
$\frac{4 b a d^{2} e^{2} x}{f^{2}}-\frac{4 b a c d e^{2}}{f^{2}}+\frac{2 b a d^{2} \ln \left(1+\mathrm{e}^{2 f x+2 e}\right) x^{2}}{f}+\frac{2 b a d^{2} \operatorname{polylog}\left(2,-\mathrm{e}^{2 f x+2 e}\right) x}{f^{2}}-\frac{4 b a d^{2} e^{2} \ln \left(\mathrm{e}^{f x+e}\right)}{f^{3}}-\frac{4 b^{2} d^{2} e x}{f^{2}}+\frac{8 b a d^{2} e^{3}}{3 f^{3}}$
$+\frac{2 b^{2} d^{2} \ln \left(1+\mathrm{e}^{2 f x+2 e}\right) x}{f^{2}}+\frac{4 b^{2} d^{2} e \ln \left(\mathrm{e}^{f x+e}\right)}{f^{3}}+\frac{2 b a c^{2} \ln \left(1+\mathrm{e}^{2 f x+2 e}\right)}{f}-\frac{4 b a c^{2} \ln \left(\mathrm{e}^{f x+e}\right)}{f}+\frac{2 b^{2} c d \ln \left(1+\mathrm{e}^{2 f x+2 e}\right)}{f^{2}}-\frac{4 b^{2} c d \ln \left(\mathrm{e}^{f x+e}\right)}{f^{2}}$
$-2 a b c d x^{2}-\frac{a b d^{2} \operatorname{poly} \log \left(3,-\mathrm{e}^{2 f x+2 e}\right)}{f^{3}}+a^{2} c d x^{2}+b^{2} c d x^{2}+\frac{b^{2} d^{2} \operatorname{polylog}\left(2,-\mathrm{e}^{2 f x+2 e}\right)}{f^{3}}+\frac{2 b a c d \operatorname{poly} \log \left(2,-\mathrm{e}^{2 f x+2 e}\right)}{f^{2}}+\frac{a^{2} d^{2} x^{3}}{3}+\frac{b^{2} d^{2} x^{3}}{3}$
$+a^{2} c^{2} x+b^{2} c^{2} x-\frac{2 b^{2} d^{2} x^{2}}{f}-\frac{2 b^{2} d^{2} e^{2}}{f^{3}}+\frac{2 b^{2}\left(d^{2} x^{2}+2 c d x+c^{2}\right)}{f\left(1+\mathrm{e}^{2 f x+2 e}\right)}-\frac{2 a b d^{2} x^{3}}{3}+2 a b c^{2} x-\frac{8 b a c d e x}{f}+\frac{4 b \ln \left(1+\mathrm{e}^{2 f x+2 e}\right) a c d x}{f}$
$+\frac{8 b a c d e \ln \left(\mathrm{e}^{f x+e}\right)}{f^{2}}$

Problem 20: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{2}(a+b \tanh (f x+e))^{3} \mathrm{~d} x
$$

Optimal(type 4, 393 leaves, 22 steps):

$$
\begin{aligned}
& \frac{b^{3} c d x}{f}+\frac{b^{3} d^{2} x^{2}}{2 f}-\frac{3 a b^{2}(d x+c)^{2}}{f}+\frac{a^{3}(d x+c)^{3}}{3 d}-\frac{a^{2} b(d x+c)^{3}}{d}+\frac{a b^{2}(d x+c)^{3}}{d}-\frac{b^{3}(d x+c)^{3}}{3 d}+\frac{6 a b^{2} d(d x+c) \ln \left(1+\mathrm{e}^{2 f x+2 e}\right)}{f^{2}} \\
& \quad+\frac{3 a^{2} b(d x+c)^{2} \ln \left(1+\mathrm{e}^{2 f x+2 e}\right)}{f}+\frac{b^{3}(d x+c)^{2} \ln \left(1+\mathrm{e}^{2 f x+2 e}\right)}{f}+\frac{b^{3} d^{2} \ln (\cosh (f x+e))}{f^{3}}+\frac{3 a b^{2} d^{2} \operatorname{polylog}\left(2,-\mathrm{e}^{2 f x+2 e}\right)}{f^{3}} \\
& \quad+\frac{3 a^{2} b d(d x+c) \operatorname{polylog}\left(2,-\mathrm{e}^{2 f x+2 e}\right)}{f^{2}}+\frac{b^{3} d(d x+c) \operatorname{polylog}\left(2,-\mathrm{e}^{2 f x+2 e}\right)}{f^{2}}-\frac{3 a^{2} b d^{2} \operatorname{poly} \log \left(3,-\mathrm{e}^{2 f x+2 e}\right)}{2 f^{3}}-\frac{b^{3} d^{2} \operatorname{poly} \log \left(3,-\mathrm{e}^{2 f x+2 e}\right)}{2 f^{3}} \\
& \quad-\frac{b^{3} d(d x+c) \tanh (f x+e)}{f^{2}}-\frac{3 a b^{2}(d x+c)^{2} \tanh (f x+e)}{f}-\frac{b^{3}(d x+c)^{2} \tanh (f x+e)^{2}}{2 f}
\end{aligned}
$$

Result(type 4, 1021 leaves):
$\frac{4 b a^{2} d^{2} e^{3}}{f^{3}}+\frac{2 b^{3} d^{2} e^{2} x}{f^{2}}-\frac{2 b^{3} c d e^{2}}{f^{2}}-\frac{6 b^{2} a d^{2} x^{2}}{f}-\frac{6 b^{2} a d^{2} e^{2}}{f^{3}}+\frac{3 b a^{2} c^{2} \ln \left(1+\mathrm{e}^{2 f x+2 e}\right)}{f}-\frac{2 b^{3} d^{2} e^{2} \ln \left(\mathrm{e}^{f x+e}\right)}{f^{3}}+\frac{b^{3} \ln \left(1+\mathrm{e}^{2 f x+2 e}\right) d^{2} x^{2}}{f}$
$+\frac{b^{3} \operatorname{poly} \log \left(2,-\mathrm{e}^{2 f x+2 e}\right) d^{2} x}{f^{2}}+\frac{b^{3} c d \operatorname{poly} \log \left(2,-\mathrm{e}^{2 f x+2 e}\right)}{f^{2}}-\frac{6 b a^{2} c^{2} \ln \left(\mathrm{e}^{f x+e}\right)}{f}-3 a^{2} b c d x^{2}+3 a b^{2} c d x^{2}$
$+\frac{1}{f^{2}\left(1+\mathrm{e}^{2 f x+2 e}\right)^{2}}\left(2 b^{2}\left(3 a d^{2} f x^{2} \mathrm{e}^{2 f x+2 e}+b d^{2} f x^{2} \mathrm{e}^{2 f x+2 e}+6 a c d f x \mathrm{e}^{2 f x+2 e}+2 b c d f x \mathrm{e}^{2 f x+2 e}+3 a c^{2} f \mathrm{e}^{2 f x+2 e}+3 a d^{2} f x^{2}+b c^{2} f \mathrm{e}^{2 f x+2 e}\right.\right.$
$\left.\left.+b d^{2} x \mathrm{e}^{2 f x+2 e}+6 a c d f x+b c d \mathrm{e}^{2 f x+2 e}+3 a c^{2} f+b d^{2} x+b c d\right)\right)+3 a^{2} b c^{2} x+3 a b^{2} c^{2} x-a^{2} b d^{2} x^{3}+a b^{2} d^{2} x^{3}+a^{3} c d x^{2}-b^{3} c d x^{2}+\frac{4 b^{3} d^{2} e^{3}}{3 f^{3}}$
$+\frac{b^{3} d^{2} \ln \left(1+\mathrm{e}^{2 f x+2 e}\right)}{f^{3}}-\frac{2 b^{3} d^{2} \ln \left(\mathrm{e}^{f x+e}\right)}{f^{3}}+\frac{b^{3} c^{2} \ln \left(1+\mathrm{e}^{2 f x+2 e}\right)}{f}-\frac{2 b^{3} c^{2} \ln \left(\mathrm{e}^{f x+e}\right)}{f}+\frac{a^{3} d^{2} x^{3}}{3}-\frac{b^{3} d^{2} x^{3}}{3}+a^{3} c^{2} x+b^{3} c^{2} x-\frac{12 b a^{2} c d e x}{f}$
$+\frac{6 b \ln \left(1+\mathrm{e}^{2 f x+2 e}\right) a^{2} c d x}{f}+\frac{12 b a^{2} c d e \ln \left(\mathrm{e}^{f x+e}\right)}{f^{2}}+\frac{3 a b^{2} d^{2} \operatorname{poly} \log \left(2,-\mathrm{e}^{2 f x+2 e}\right)}{f^{3}}-\frac{3 a^{2} b d^{2} \operatorname{poly} \log \left(3,-\mathrm{e}^{2 f x+2 e}\right)}{2 f^{3}}$
$-\frac{b^{3} d^{2} \operatorname{poly} \log \left(3,-\mathrm{e}^{2 f x+2 e}\right)}{2 f^{3}}-\frac{6 b a^{2} c d e^{2}}{f^{2}}+\frac{6 b a^{2} d^{2} e^{2} x}{f^{2}}-\frac{4 b^{3} c d e x}{f}-\frac{12 b^{2} a d^{2} e x}{f^{2}}+\frac{3 b \ln \left(1+\mathrm{e}^{2 f x+2 e}\right) a^{2} d^{2} x^{2}}{f}$
$+\frac{3 b \operatorname{poly} \log \left(2,-\mathrm{e}^{2 f x+2 e}\right) a^{2} d^{2} x}{f^{2}}+\frac{3 b a^{2} c d \operatorname{poly} \log \left(2,-\mathrm{e}^{2 f x+2 e}\right)}{f^{2}}+\frac{12 b^{2} a d^{2} e \ln \left(\mathrm{e}^{f x+e}\right)}{f^{3}}-\frac{6 b a^{2} d^{2} e^{2} \ln \left(\mathrm{e}^{f x+e}\right)}{f^{3}}+\frac{6 b^{2} \ln \left(1+\mathrm{e}^{2 f x+2 e}\right) a d^{2} x}{f^{2}}$
$+\frac{2 b^{3} \ln \left(1+\mathrm{e}^{2 f x+2 e}\right) c d x}{f}+\frac{4 b^{3} c d e \ln \left(\mathrm{e}^{f x+e}\right)}{f^{2}}-\frac{12 b^{2} a c d \ln \left(\mathrm{e}^{f x+e}\right)}{f^{2}}+\frac{6 b^{2} a c d \ln \left(1+\mathrm{e}^{2 f x+2 e}\right)}{f^{2}}$

Problem 23: Result more than twice size of optimal antiderivative.

$$
\int \frac{d x+c}{a+b \tanh (f x+e)} \mathrm{d} x
$$

Optimal(type 4, 107 leaves, 4 steps):

$$
\frac{(d x+c)^{2}}{2(a+b) d}-\frac{b(d x+c) \ln \left(1+\frac{a-b}{(a+b) \mathrm{e}^{2 f x+2 e}}\right)}{\left(a^{2}-b^{2}\right) f}+\frac{b d \operatorname{polylog}\left(2, \frac{-a+b}{(a+b) \mathrm{e}^{2 f x+2 e}}\right)}{2\left(a^{2}-b^{2}\right) f^{2}}
$$

Result(type 4, 356 leaves):

$$
\begin{aligned}
& \frac{d x^{2}}{2(a+b)}+\frac{c x}{a+b}-\frac{b c \ln \left(a \mathrm{e}^{2 f x+2 e}+b \mathrm{e}^{2 f x+2 e}+a-b\right)}{(a+b) f(a-b)}+\frac{2 b c \ln \left(\mathrm{e}^{f x+e}\right)}{(a+b) f(a-b)}+\frac{b d \ln \left(1-\frac{(a+b) \mathrm{e}^{2 f x+2 e}}{-a+b}\right) x}{(a+b) f(-a+b)} \\
& \quad+\frac{b d \ln \left(1-\frac{(a+b) \mathrm{e}^{2 f x+2 e}}{-a+b}\right) e}{(a+b) f^{2}(-a+b)}-\frac{b d x^{2}}{(a+b)(-a+b)}-\frac{2 b d e x}{(a+b) f(-a+b)}-\frac{b d e^{2}}{(a+b) f^{2}(-a+b)}+\frac{b d \operatorname{polylog}\left(2, \frac{(a+b) \mathrm{e}^{2 f x+2 e}}{-a+b}\right)}{2(a+b) f^{2}(-a+b)} \\
& \quad+\frac{b d e \ln \left(a \mathrm{e}^{2 f x+2 e}+b \mathrm{e}^{2 f x+2 e}+a-b\right)}{(a+b) f^{2}(a-b)}-\frac{2 b d e \ln \left(\mathrm{e}^{f x+e}\right)}{(a+b) f^{2}(a-b)}
\end{aligned}
$$

Test results for the 68 problems in "6.3.2 Hyperbolic tangent functions.txt"
Problem 2: Result more than twice size of optimal antiderivative.

$$
\int \tanh (b x+a)^{4} \mathrm{~d} x
$$

Optimal(type 3, 26 leaves, 3 steps):

$$
x-\frac{\tanh (b x+a)}{b}-\frac{\tanh (b x+a)^{3}}{3 b}
$$

Result(type 3, 53 leaves):

$$
-\frac{\tanh (b x+a)^{3}}{3 b}-\frac{\tanh (b x+a)}{b}-\frac{\ln (-1+\tanh (b x+a))}{2 b}+\frac{\ln (1+\tanh (b x+a))}{2 b}
$$

Problem 3: Result more than twice size of optimal antiderivative

$$
\int \operatorname{coth}(b x+a) \mathrm{d} x
$$

Optimal(type 3, 11 leaves, 1 step):

$$
\frac{\ln (\sinh (b x+a))}{b}
$$

Result(type 3, 29 leaves):

$$
-\frac{\ln (\operatorname{coth}(b x+a)-1)}{2 b}-\frac{\ln (\operatorname{coth}(b x+a)+1)}{2 b}
$$

Problem 4: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{coth}(b x+a)^{4} \mathrm{~d} x
$$

Optimal(type 3, 26 leaves, 3 steps):

$$
x-\frac{\operatorname{coth}(b x+a)}{b}-\frac{\operatorname{coth}(b x+a)^{3}}{3 b}
$$

Result(type 3, 53 leaves):

$$
-\frac{\operatorname{coth}(b x+a)^{3}}{3 b}-\frac{\operatorname{coth}(b x+a)}{b}-\frac{\ln (\operatorname{coth}(b x+a)-1)}{2 b}+\frac{\ln (\operatorname{coth}(b x+a)+1)}{2 b}
$$

Problem 10: Unable to integrate problem.

$$
\int(b \tanh (d x+c))^{n} \mathrm{~d} x
$$

Optimal(type 5, 46 leaves, 2 steps):

$$
\frac{\operatorname{hypergeom}\left(\left[1, \frac{1}{2}+\frac{n}{2}\right],\left[\frac{3}{2}+\frac{n}{2}\right], \tanh (d x+c)^{2}\right)(b \tanh (d x+c))^{1+n}}{b d(1+n)}
$$

Result(type 8, 12 leaves):

$$
\int(b \tanh (d x+c))^{n} \mathrm{~d} x
$$

Problem 15: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{a+a \tanh (d x+c)} \mathrm{d} x
$$

Optimal(type 3, 24 leaves, 2 steps):

$$
\frac{x}{2 a}-\frac{1}{2 d(a+a \tanh (d x+c))}
$$

Result(type 3, 53 leaves):

$$
-\frac{\ln (\tanh (d x+c)-1)}{4 a d}-\frac{1}{2 a d(\tanh (d x+c)+1)}+\frac{\ln (\tanh (d x+c)+1)}{4 a d}
$$

Problem 19: Result more than twice size of optimal antiderivative.

$$
\int(a+b \tanh (d x+c))^{3} \mathrm{~d} x
$$

Optimal(type 3, 67 leaves, 3 steps):

$$
a\left(a^{2}+3 b^{2}\right) x+\frac{b\left(3 a^{2}+b^{2}\right) \ln (\cosh (d x+c))}{d}-\frac{2 a b^{2} \tanh (d x+c)}{d}-\frac{b(a+b \tanh (d x+c))^{2}}{2 d}
$$

Result(type 3, 172 leaves):
$-\frac{b^{3} \tanh (d x+c)^{2}}{2 d}-\frac{3 a b^{2} \tanh (d x+c)}{d}-\frac{\ln (\tanh (d x+c)-1) a^{3}}{2 d}-\frac{3 \ln (\tanh (d x+c)-1) a^{2} b}{2 d}-\frac{3 \ln (\tanh (d x+c)-1) a b^{2}}{2 d}$
$-\frac{\ln (\tanh (d x+c)-1) b^{3}}{2 d}+\frac{\ln (\tanh (d x+c)+1) a^{3}}{2 d}-\frac{3 \ln (\tanh (d x+c)+1) a^{2} b}{2 d}+\frac{3 \ln (\tanh (d x+c)+1) a b^{2}}{2 d}-\frac{\ln (\tanh (d x+c)+1) b^{3}}{2 d}$

Problem 23: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (x)^{3}}{1+\tanh (x)} \mathrm{d} x
$$

Optimal(type 3, 19 leaves, 9 steps):

$$
-\frac{\cosh (x)^{3}}{3}+\frac{\cosh (x)^{5}}{5}-\frac{\sinh (x)^{5}}{5}
$$

Result (type 3, 71 leaves):

$$
\begin{aligned}
& -\frac{1}{6\left(\tanh \left(\frac{x}{2}\right)-1\right)^{3}}-\frac{1}{4\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}+\frac{1}{8\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}+\frac{2}{5\left(\tanh \left(\frac{x}{2}\right)+1\right)^{5}}-\frac{1}{\left(\tanh \left(\frac{x}{2}\right)+1\right)}
\end{aligned}
$$

Problem 24: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (x)^{4}}{a+b \tanh (x)} \mathrm{d} x
$$

Optimal(type 3, 139 leaves, 5 steps):

$$
\begin{aligned}
& -\frac{a(3 a+b) \ln (1-\tanh (x))}{16(a+b)^{3}}+\frac{a(3 a-b) \ln (1+\tanh (x))}{16(a-b)^{3}}-\frac{a^{4} b \ln (a+b \tanh (x))}{\left(a^{2}-b^{2}\right)^{3}}-\frac{\cosh (x)^{4}(b-a \tanh (x))}{4\left(a^{2}-b^{2}\right)} \\
& +\frac{\cosh (x)^{2}\left(4 b\left(2 a^{2}-b^{2}\right)-a\left(5 a^{2}-b^{2}\right) \tanh (x)\right)}{8\left(a^{2}-b^{2}\right)^{2}}
\end{aligned}
$$

Result(type 3, 319 leaves):

$$
\begin{aligned}
& \frac{8}{(32 a+32 b)\left(\tanh \left(\frac{x}{2}\right)-1\right)^{4}}+\frac{32}{(64 a+64 b)\left(\tanh \left(\frac{x}{2}\right)-1\right)^{3}}-\frac{a}{8(a+b)^{2}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}+\frac{b}{8(a+b)^{2}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}} \\
& -\frac{3 a}{8(a+b)^{2}\left(\tanh \left(\frac{x}{2}\right)-1\right)}-\frac{b}{8(a+b)^{2}\left(\tanh \left(\frac{x}{2}\right)-1\right)}-\frac{3 a^{2} \ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{8(a+b)^{3}}-\frac{a \ln \left(\tanh \left(\frac{x}{2}\right)-1\right) b}{8(a+b)^{3}} \\
& -\frac{b a^{4} \ln \left(\tanh \left(\frac{x}{2}\right)^{2} a+2 \tanh \left(\frac{x}{2}\right) b+a\right)}{(a+b)^{3}(a-b)^{3}}-\frac{8}{(32 a-32 b)\left(\tanh \left(\frac{x}{2}\right)+1\right)^{4}}+\frac{8}{(64 a-64 b)\left(\tanh \left(\frac{x}{2}\right)+1\right)^{3}} \\
& +\frac{a}{8(a-b)^{2}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}+\frac{b}{8(a-b)^{2}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}-\frac{3 a}{8(a-b)^{2}\left(\tanh \left(\frac{x}{2}\right)+1\right)}+\frac{b}{8(a-b)^{2}\left(\tanh \left(\frac{x}{2}\right)+1\right)}
\end{aligned}
$$

$$
+\frac{3 a^{2} \ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{8(a-b)^{3}}-\frac{a \ln \left(\tanh \left(\frac{x}{2}\right)+1\right) b}{8(a-b)^{3}}
$$

Problem 26: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (x)^{4}}{1+\tanh (x)} \mathrm{d} x
$$

Optimal(type 3, 48 leaves, 4 steps):

$$
\frac{5 x}{16}+\frac{1}{32(1-\tanh (x))^{2}}+\frac{1}{8(1-\tanh (x))}-\frac{1}{24(1+\tanh (x))^{3}}-\frac{3}{32(1+\tanh (x))^{2}}-\frac{3}{16(1+\tanh (x))}
$$

Result(type 3, 115 leaves):

$$
\begin{aligned}
& \frac{1}{8\left(\tanh \left(\frac{x}{2}\right)-1\right)^{4}}+\frac{1}{4\left(\tanh \left(\frac{x}{2}\right)-1\right)^{3}}+\frac{1}{2\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}+\frac{3}{8\left(\tanh \left(\frac{x}{2}\right)-1\right)}-\frac{5 \ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{16}-\frac{15}{3\left(\tanh \left(\frac{x}{2}\right)+1\right)^{6}} \\
& \quad+\frac{1}{\left(\tanh \left(\frac{x}{2}\right)+1\right)^{5}}-\frac{15}{8\left(\tanh \left(\frac{x}{2}\right)+1\right)^{4}}+\frac{25}{12\left(\tanh \left(\frac{x}{2}\right)+1\right)^{3}}-\frac{15}{8\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}+\frac{1}{\tanh \left(\frac{x}{2}\right)+1}+\frac{5 \ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{16}
\end{aligned}
$$

Problem 27: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (x)^{3}}{1+\tanh (x)} \mathrm{d} x
$$

Optimal(type 3, 23 leaves, 3 steps):

$$
\frac{4 \sinh (x)}{5}+\frac{4 \sinh (x)^{3}}{15}-\frac{\cosh (x)^{3}}{5(1+\tanh (x))}
$$

Result(type 3, 79 leaves):

$$
\begin{aligned}
& -\frac{1}{6\left(\tanh \left(\frac{x}{2}\right)-1\right)^{3}}-\frac{1}{4\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}-\frac{5}{8\left(\tanh \left(\frac{x}{2}\right)-1\right)}-\frac{2}{5\left(\tanh \left(\frac{x}{2}\right)+1\right)^{5}}+\frac{1}{\left(\tanh \left(\frac{x}{2}\right)+1\right)^{4}}-\frac{11}{3\left(\tanh \left(\frac{x}{2}\right)+1\right)^{3}} \\
& \quad+\frac{3}{2\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}-\frac{1}{8\left(\tanh \left(\frac{x}{2}\right)+1\right)}
\end{aligned}
$$

Problem 28: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(x)^{6}}{1+\tanh (x)} \mathrm{d} x
$$

Optimal(type 3, 21 leaves, 3 steps):

$$
-\frac{2(1-\tanh (x))^{3}}{3}+\frac{(1-\tanh (x))^{4}}{4}
$$

Result(type 3, 55 leaves):

$$
-\frac{2\left(-\tanh \left(\frac{x}{2}\right)^{7}+\tanh \left(\frac{x}{2}\right)^{6}-\frac{5 \tanh \left(\frac{x}{2}\right)^{5}}{3}-\frac{5 \tanh \left(\frac{x}{2}\right)^{3}}{3}+\tanh \left(\frac{x}{2}\right)^{2}-\tanh \left(\frac{x}{2}\right)\right)}{\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}
$$

Problem 29: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(x)^{7}}{1+\tanh (x)} \mathrm{d} x
$$

Optimal(type 3, 26 leaves, 4 steps):

$$
\frac{3 \arctan (\sinh (x))}{8}+\frac{\operatorname{sech}(x)^{5}}{5}+\frac{3 \operatorname{sech}(x) \tanh (x)}{8}+\frac{\operatorname{sech}(x)^{3} \tanh (x)}{4}
$$

Result(type 3, 66 leaves):

$$
\frac{2\left(-\frac{5 \tanh \left(\frac{x}{2}\right)^{9}}{8}+\tanh \left(\frac{x}{2}\right)^{8}-\frac{\tanh \left(\frac{x}{2}\right)^{7}}{4}+2 \tanh \left(\frac{x}{2}\right)^{4}+\frac{\tanh \left(\frac{x}{2}\right)^{3}}{4}+\frac{5 \tanh \left(\frac{x}{2}\right)}{8}+\frac{1}{5}\right)}{\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{5}}+\frac{3 \arctan \left(\tanh \left(\frac{x}{2}\right)\right)}{4}
$$

Problem 30: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(x)^{8}}{a+b \tanh (x)} \mathrm{d} x
$$

Optimal(type 3, 130 leaves, 3 steps):
$-\frac{\left(a^{2}-b^{2}\right)^{3} \ln (a+b \tanh (x))}{b^{7}}+\frac{a\left(a^{4}-3 a^{2} b^{2}+3 b^{4}\right) \tanh (x)}{b^{6}}-\frac{\left(a^{4}-3 a^{2} b^{2}+3 b^{4}\right) \tanh (x)^{2}}{2 b^{5}}+\frac{a\left(a^{2}-3 b^{2}\right) \tanh (x)^{3}}{3 b^{4}}-\frac{\left(a^{2}-3 b^{2}\right) \tanh (x)^{4}}{4 b^{3}}$

$$
+\frac{a \tanh (x)^{5}}{5 b^{2}}-\frac{\tanh (x)^{6}}{6 b}
$$

Result(type 3, 924 leaves):
$\frac{10 \tanh \left(\frac{x}{2}\right)^{9} a^{5}}{b^{6}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}-\frac{82 \tanh \left(\frac{x}{2}\right)^{9} a^{3}}{3 b^{4}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}+\frac{22 \tanh \left(\frac{x}{2}\right)^{9} a}{b^{2}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}+\frac{20 \tanh \left(\frac{x}{2}\right)^{7} a^{5}}{b^{6}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}-\frac{52 \tanh \left(\frac{x}{2}\right)^{7} a^{3}}{b^{4}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}$

$$
\begin{aligned}
& +\frac{212 \tanh \left(\frac{x}{2}\right)^{7} a}{5 b^{2}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}-\frac{12 \tanh \left(\frac{x}{2}\right)^{6} a^{4}}{b^{5}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}+\frac{28 \tanh \left(\frac{x}{2}\right)^{6} a^{2}}{b^{3}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}+\frac{20 \tanh \left(\frac{x}{2}\right)^{5} a^{5}}{b^{6}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}-\frac{52 \tanh \left(\frac{x}{2}\right)^{5} a^{3}}{b^{4}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}} \\
& +\frac{212 \tanh \left(\frac{x}{2}\right)^{5} a}{5 b^{2}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}+\frac{10 \tanh \left(\frac{x}{2}\right)^{3} a^{5}}{b^{6}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}-\frac{82 \tanh \left(\frac{x}{2}\right)^{3} a^{3}}{3 b^{4}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}+\frac{22 \tanh \left(\frac{x}{2}\right)^{3} a}{b^{2}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}+\frac{2 \tanh \left(\frac{x}{2}\right)^{11} a^{5}}{b^{6}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}} \\
& -\frac{6 \tanh \left(\frac{x}{2}\right)^{11} a^{3}}{b^{4}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}+\frac{6 \tanh \left(\frac{x}{2}\right)^{11} a}{b^{2}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}-\frac{2 \tanh \left(\frac{x}{2}\right)^{10} a^{4}}{b^{5}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}+\frac{6 \tanh \left(\frac{x}{2}\right)^{10} a^{2}}{b^{3}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}-\frac{8 \tanh \left(\frac{x}{2}\right)^{8} a^{4}}{b^{5}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}} \\
& +\frac{20 \tanh \left(\frac{x}{2}\right)^{8} a^{2}}{b^{3}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}-\frac{8 \tanh \left(\frac{x}{2}\right)^{4} a^{4}}{b^{5}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}+\frac{20 \tanh \left(\frac{x}{2}\right)^{4} a^{2}}{b^{3}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}-\frac{2 \tanh \left(\frac{x}{2}\right)^{2} a^{4}}{b^{5}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}+\frac{6 \tanh \left(\frac{x}{2}\right)^{2} a^{2}}{b^{3}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}} \\
& +\frac{2 \tanh \left(\frac{x}{2}\right) a^{5}}{b^{6}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}-\frac{6 \tanh \left(\frac{x}{2}\right) a^{3}}{b^{4}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}+\frac{6 \tanh \left(\frac{x}{2}\right) a}{b^{2}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}-\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)^{2}+1\right) a^{4}}{b^{5}}+\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)^{2}+1\right) a^{2}}{b^{3}} \\
& -\frac{68 \tanh \left(\frac{x}{2}\right)^{6}}{3 b\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}-\frac{6 \tanh \left(\frac{x}{2}\right)^{10}}{b\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}-\frac{12 \tanh \left(\frac{x}{2}\right)^{8}}{b\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}-\frac{12 \tanh \left(\frac{x}{2}\right)^{4}}{b\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}}-\frac{6 \tanh \left(\frac{x}{2}\right)^{2}}{b\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{6}} \\
& +\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2}+1\right) a^{6}}{b^{7}}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2} a+2 \tanh \left(\frac{x}{2}\right) b+a\right) a^{6}}{b^{7}}+\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)^{2} a+2 \tanh \left(\frac{x}{2}\right) b+a\right) a^{4}}{b^{5}} \\
& -\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)^{2} a+2 \tanh \left(\frac{x}{2}\right) b+a\right) a^{2}}{b^{3}}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)}{b}+\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2} a+2 \tanh \left(\frac{x}{2}\right) b+a\right)}{b}
\end{aligned}
$$

Problem 36: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{coth}(x)^{2}}{1+\tanh (x)} \mathrm{d} x
$$

Optimal(type 3, 23 leaves, 4 steps):

$$
\frac{3 x}{2}-\frac{3 \operatorname{coth}(x)}{2}-\ln (\sinh (x))+\frac{\operatorname{coth}(x)}{2(1+\tanh (x))}
$$

Result(type 3, 58 leaves):

$$
-\frac{\tanh \left(\frac{x}{2}\right)}{2}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{2}-\frac{1}{2 \tanh \left(\frac{x}{2}\right)}-\ln \left(\tanh \left(\frac{x}{2}\right)\right)-\frac{1}{\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}+\frac{1}{\tanh \left(\frac{x}{2}\right)+1}+\frac{5 \ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{2}
$$

Problem 37: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{coth}(x)^{4}}{1+\tanh (x)} \mathrm{d} x
$$

Optimal(type 3, 35 leaves, 6 steps):

$$
\frac{5 x}{2}-\frac{5 \operatorname{coth}(x)}{2}+\operatorname{coth}(x)^{2}-\frac{5 \operatorname{coth}(x)^{3}}{6}-2 \ln (\sinh (x))+\frac{\operatorname{coth}(x)^{3}}{2(1+\tanh (x))}
$$

Result(type 3, 90 leaves):

$$
\begin{aligned}
& -\frac{\tanh \left(\frac{x}{2}\right)^{3}}{24}+\frac{\tanh \left(\frac{x}{2}\right)^{2}}{8}-\frac{9 \tanh \left(\frac{x}{2}\right)}{8}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{2}-\frac{1}{24 \tanh \left(\frac{x}{2}\right)^{3}}+\frac{1}{8 \tanh \left(\frac{x}{2}\right)^{2}}-\frac{9}{8 \tanh \left(\frac{x}{2}\right)}-2 \ln \left(\tanh \left(\frac{x}{2}\right)\right) \\
& -\frac{1}{\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}+\frac{1}{\tanh \left(\frac{x}{2}\right)+1}+\frac{9 \ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{2}
\end{aligned}
$$

Problem 42: Result is not expressed in closed-form.

$$
\int x^{2} \tanh (a+2 \ln (x)) \mathrm{d} x
$$

Optimal(type 3, 111 leaves, 11 steps):

$$
\frac{x^{3}}{3}-\frac{\arctan \left(\mathrm{e}^{\frac{a}{2}} x \sqrt{2}-1\right) \sqrt{2}}{2 \mathrm{e}^{\frac{3 a}{2}}}-\frac{\arctan \left(1+\mathrm{e}^{\frac{a}{2}} x \sqrt{2}\right) \sqrt{2}}{2 \mathrm{e}^{\frac{3 a}{2}}}-\frac{\ln \left(1+\mathrm{e}^{a} x^{2}-\mathrm{e}^{\frac{a}{2}} x \sqrt{2}\right) \sqrt{2}}{4 \mathrm{e}^{\frac{3 a}{2}}}+\frac{\ln \left(1+\mathrm{e}^{a} x^{2}+\mathrm{e}^{\frac{a}{2}} x \sqrt{2}\right) \sqrt{2}}{4 \mathrm{e}^{\frac{3 a}{2}}}
$$

Result(type 7, 36 leaves):

$$
\frac{x^{3}}{3}-\frac{\mathrm{e}^{-2 a}\left(\sum_{R=\operatorname{RootOf}\left(\mathrm{e}^{2} a Z^{4}+1\right)} \frac{\ln \left(x-_R\right)}{_^{R}}\right)}{2}
$$

Problem 43: Result more than twice size of optimal antiderivative.

$$
\int x \tanh (a+2 \ln (x)) \mathrm{d} x
$$

Optimal(type 3, 19 leaves, 4 steps):

$$
\frac{x^{2}}{2}-\frac{\arctan \left(\mathrm{e}^{a} x^{2}\right)}{\mathrm{e}^{a}}
$$

Result(type 3, 40 leaves):

$$
\frac{x^{2}}{2}+\frac{\mathrm{Ie}^{-a} \ln \left(\mathrm{e}^{a} x^{2}-\mathrm{I}\right)}{2}-\frac{\mathrm{Ie}^{-a} \ln \left(\mathrm{e}^{a} x^{2}+\mathrm{I}\right)}{2}
$$

Problem 44: Result is not expressed in closed-form.

$$
\int \frac{\tanh (a+2 \ln (x))}{x^{3}} d x
$$

Optimal(type 3, 16 leaves, 4 steps):

$$
\frac{1}{2 x^{2}}+\mathrm{e}^{a} \arctan \left(\mathrm{e}^{a} x^{2}\right)
$$

Result(type 7, 43 leaves):

$$
\frac{1}{2 x^{2}}+\frac{\left(\sum_{-R=\operatorname{Root} O f\left(\mathrm{e}^{2} a+Z^{2}\right)}-R \ln \left(\left(4 \mathrm{e}^{2 a}+5 _R^{2}\right) x^{2}-{ }_{-} R\right)\right)}{2}
$$

Problem 46: Result is not expressed in closed-form.

$$
\int \tanh (a+2 \ln (x))^{2} \mathrm{~d} x
$$

Optimal(type 3, 121 leaves, 13 steps):

$$
x+\frac{x}{1+\mathrm{e}^{2 a} x^{4}}-\frac{\arctan \left(\mathrm{e}^{\frac{a}{2}} x \sqrt{2}-1\right) \sqrt{2}}{4 \mathrm{e}^{\frac{a}{2}}}-\frac{\arctan \left(1+\mathrm{e}^{\frac{a}{2}} x \sqrt{2}\right) \sqrt{2}}{4 \mathrm{e}^{\frac{a}{2}}}+\frac{\ln \left(1+\mathrm{e}^{a} x^{2}-\mathrm{e}^{\frac{a}{2}} x \sqrt{2}\right) \sqrt{2}}{8 \mathrm{e}^{\frac{a}{2}}}-\frac{\ln \left(1+\mathrm{e}^{a} x^{2}+\mathrm{e}^{\frac{a}{2}} x \sqrt{2}\right) \sqrt{2}}{8 \mathrm{e}^{\frac{a}{2}}}
$$

Result(type 7, 46 leaves):

$$
x+\frac{x}{1+\mathrm{e}^{2 a} x^{4}}-\frac{\left.\mathrm{e}^{-2 a}\left(\sum_{R=\operatorname{RootOf}\left(\mathrm{e}^{2} a\right.} Z^{4}+1\right) \frac{\left.\ln (x\}_{-} R\right)}{R^{3}}\right)}{4}
$$

Problem 47: Unable to integrate problem.

$$
\int \tanh \left(a+\frac{\ln (x)}{2}\right)^{p} \mathrm{~d} x
$$

Optimal(type 5, 48 leaves, 2 steps):

$$
\frac{\left(-1+\mathrm{e}^{2 a} x\right)^{1+p} \text { hypergeom }\left([p, 1+p],[2+p], \frac{1}{2}-\frac{\mathrm{e}^{2 a} x}{2}\right)}{2^{p} \mathrm{e}^{2 a}(1+p)}
$$

Result(type 8, 11 leaves):

$$
\int \tanh \left(a+\frac{\ln (x)}{2}\right)^{p} \mathrm{~d} x
$$

Problem 48: Unable to integrate problem.

$$
\int \tanh \left(a+\frac{\ln (x)}{6}\right)^{p} \mathrm{~d} x
$$

Optimal(type 5, 139 leaves, 5 steps):

$$
\begin{aligned}
& -\frac{p\left(-1+\mathrm{e}^{2 a} x^{1 / 3}\right)^{1+p}\left(1+\mathrm{e}^{2 a} x^{1 / 3}\right)^{1-p}}{\mathrm{e}^{6 a}}+\frac{\left(-1+\mathrm{e}^{2 a} x^{1 / 3}\right)^{1+p}\left(1+\mathrm{e}^{2 a} x^{1 / 3}\right)^{1-p} x^{1 / 3}}{\mathrm{e}^{4 a}} \\
& +\frac{\left(2 p^{2}+1\right)\left(-1+\mathrm{e}^{2 a} x^{1 / 3}\right)^{1+p} \operatorname{hypergeom}\left([p, 1+p],[2+p], \frac{1}{2}-\frac{\mathrm{e}^{2 a} x^{1 / 3}}{2}\right)}{2^{p} \mathrm{e}^{6 a}(1+p)}
\end{aligned}
$$

Result(type 8, 11 leaves):

$$
\int \tanh \left(a+\frac{\ln (x)}{6}\right)^{p} \mathrm{~d} x
$$

Problem 50: Unable to integrate problem.

$$
\int(x e)^{m} \tanh \left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)^{2} \mathrm{~d} x
$$

Optimal(type 5, 164 leaves, 5 steps):

$$
\frac{(d b n+m+1)(x e)^{1+m}}{b d e(1+m) n}+\frac{(x e)^{1+m}\left(1-\mathrm{e}^{2 a d}\left(c x^{n}\right)^{2 b d}\right)}{b d e n\left(1+\mathrm{e}^{2 a d}\left(c x^{n}\right)^{2 b d}\right)}-\frac{2(x e)^{1+m} \text { hypergeom }\left(\left[1, \frac{1+m}{2 b d n}\right],\left[1+\frac{1+m}{2 b d n}\right],-\mathrm{e}^{2 a d}\left(c x^{n}\right)^{2 b d}\right)}{b d e n}
$$

Result(type 8, 326 leaves):
$\underline{x} \mathrm{e}^{m\left(\ln (e)+\ln (x)-\frac{\mathrm{I} \pi \operatorname{csgn}(I e x)(-\operatorname{csgn}(\mathrm{I} e x)+\operatorname{csgn}(\mathrm{I} e))(-\operatorname{csgn}(\mathrm{I} e x)+\operatorname{csgn}(\mathrm{I} x))}{2}\right)}$
$1+m$

$$
\left.+\frac{2 x \mathrm{e}^{m\left(\ln (e)+\ln (x)-\frac{\mathrm{I} \pi \operatorname{csgn}(\mathrm{I} e x)(-\operatorname{csgn}(\mathrm{I} e x)+\operatorname{csgn}(\mathrm{I} e))(-\operatorname{csgn}(\mathrm{I} e x)+\operatorname{csgn}(\mathrm{I} x))}{2}\right)}}{d b n\left(\left(\mathrm{e}^{\left.d\left(a+b\left(\ln (c)+\ln \left(\mathrm{e}^{n \ln (x)}\right)-\frac{\mathrm{I} \pi \operatorname{csgn}\left(\mathrm{I} c \mathrm{e}^{n \ln (x))\left(-\operatorname{csgn}\left(\mathrm{I} c \mathrm{e}^{n \ln (x)}\right)+\operatorname{csgn}(\mathrm{I} c)\right)\left(-\operatorname{csgn}\left(\mathrm{I} c \mathrm{e}^{n \ln (x))}+\operatorname{csgn}\left(\mathrm{I} \mathrm{e}^{n \ln (x)}\right)\right)\right.}\right.}{2}\right)\right)\right)^{2}}+1\right)\right.}+\right\}
$$

Problem 53: Result unnecessarily involves higher level functions and more than twice size of optimal antiderivative.

$$
\int \sqrt{a+b \tanh (x)^{2}+c \tanh (x)^{4}} \tanh (x) d x
$$

Optimal(type 3, 108 leaves, 8 steps):

Result(type 4, 558 leaves):

$$
+c) \sqrt{2} \sqrt{4-\frac{2\left(-b+\sqrt{-4 a c+b^{2}}\right) \tanh (x)^{2}}{a}} \sqrt{4+\frac{2\left(b+\sqrt{\left.-4 a c+b^{2}\right) \tanh (x)^{2}}\right.}{a}} \text { EllipticF } \frac{\tanh (x) \sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}} \sqrt{2}, ~\left(\frac{1}{a}\right.}{}
$$

$$
\left.\frac{\left.\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}\right)}{2}\right)-\frac{\ln \left(\frac{b+2 c \tanh (x)^{2}}{\sqrt{c}}+2 \sqrt{a+b \tanh (x)^{2}+c \tanh (x)^{4}}\right) b}{4 \sqrt{c}}
$$

$$
-\frac{\left.\ln \left(\frac{b+2 c \tanh (x)^{2}}{\sqrt{c}}+2 \sqrt{a+b \tanh (x)^{2}+c \tanh (x)^{4}}\right) \sqrt{c}\right)}{2}+\frac{a \operatorname{arctanh}\left(\frac{b \tanh (x)^{2}+2 c \tanh (x)^{2}+2 a+b}{2 \sqrt{a+b+c} \sqrt{a+b \tanh (x)^{2}+c \tanh (x)^{4}}}\right)}{2 \sqrt{a+b+c}}
$$

$$
+\frac{b \operatorname{arctanh}\left(\frac{b \tanh (x)^{2}+2 c \tanh (x)^{2}+2 a+b}{2 \sqrt{a+b+c} \sqrt{a+b \tanh (x)^{2}+c \tanh (x)^{4}}}\right)}{2 \sqrt{a+b+c}}+\frac{c \operatorname{arctanh}\left(\frac{b \tanh (x)^{2}+2 c \tanh (x)^{2}+2 a+b}{2 \sqrt{a+b+c} \sqrt{a+b \tanh (x)^{2}+c \tanh (x)^{4}}}\right)}{2 \sqrt{a+b+c}}
$$

$$
\begin{aligned}
& -\frac{1}{8 \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}} \sqrt{a+b \tanh (x)^{2}+c \tanh (x)^{4}}}((-b \\
& \left.-c) \sqrt{2} \sqrt{4-\frac{2\left(-b+\sqrt{-4 a c+b^{2}}\right) \tanh (x)^{2}}{a}} \sqrt{4+\frac{2\left(b+\sqrt{\left.-4 a c+b^{2}\right) \tanh (x)^{2}}\right.}{a}} \text { EllipticF } \sqrt{\frac{\tanh (x) \sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}}{2}}\right) \\
& \left.\frac{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}{2}\right)
\end{aligned}
$$

Problem 57: Result more than twice size of optimal antiderivative.
$\int \mathrm{e}^{x} \operatorname{coth}(3 x) \mathrm{d} x$
Optimal(type 3, 66 leaves, 12 steps):

$$
\mathrm{e}^{x}-\frac{2 \operatorname{arctanh}\left(\mathrm{e}^{x}\right)}{3}+\frac{\ln \left(1-\mathrm{e}^{x}+\mathrm{e}^{2 x}\right)}{6}-\frac{\ln \left(1+\mathrm{e}^{x}+\mathrm{e}^{2 x}\right)}{6}+\frac{\arctan \left(\frac{\left(1-2 \mathrm{e}^{x}\right) \sqrt{3}}{3}\right) \sqrt{3}}{3}-\frac{\arctan \left(\frac{\left(1+2 \mathrm{e}^{x}\right) \sqrt{3}}{3}\right) \sqrt{3}}{3}
$$

Result(type 3, 137 leaves):

$$
\begin{aligned}
e^{x}- & \frac{\ln \left(e^{x}+\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)}{6}+\frac{\mathrm{I} \ln \left(\mathrm{e}^{x}+\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{3}}{6}-\frac{\ln \left(\mathrm{e}^{x}+\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)}{6}-\frac{\mathrm{I} \ln \left(\mathrm{e}^{x}+\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{3}}{6}-\frac{\ln \left(\mathrm{e}^{x}+1\right)}{3}+\frac{\ln \left(\mathrm{e}^{x}-1\right)}{3} \\
& +\frac{\ln \left(\mathrm{e}^{x}-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)}{6}+\frac{\mathrm{I} \ln \left(\mathrm{e}^{x}-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{3}}{6}+\frac{\ln \left(\mathrm{e}^{x}-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)}{6}-\frac{\mathrm{I} \ln \left(\mathrm{e}^{x}-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{3}}{6}
\end{aligned}
$$

Problem 59: Result is not expressed in closed-form.

$$
\int \mathrm{e}^{x} \operatorname{coth}(4 x)^{2} \mathrm{~d} x
$$

Optimal(type 3, 92 leaves, 17 steps):

$$
\begin{aligned}
\mathrm{e}^{x}+ & \frac{\mathrm{e}^{x}}{2\left(1-\mathrm{e}^{8 x}\right)}-\frac{\arctan \left(\mathrm{e}^{x}\right)}{8}-\frac{\operatorname{arctanh}\left(\mathrm{e}^{x}\right)}{8}-\frac{\arctan \left(\mathrm{e}^{x} \sqrt{2}-1\right) \sqrt{2}}{16}-\frac{\arctan \left(1+\mathrm{e}^{x} \sqrt{2}\right) \sqrt{2}}{16}+\frac{\ln \left(1+\mathrm{e}^{2 x}-\mathrm{e}^{x} \sqrt{2}\right) \sqrt{2}}{32} \\
& -\frac{\ln \left(1+\mathrm{e}^{2 x}+\mathrm{e}^{x} \sqrt{2}\right) \sqrt{2}}{32}
\end{aligned}
$$

Result(type 7, 67 leaves):

$$
\mathrm{e}^{x}-\frac{\mathrm{e}^{x}}{2\left(\mathrm{e}^{8 x}-1\right)}+\left(\sum_{-R=\text { RootOf }\left(65536 _Z^{4}+1\right)} \operatorname{lin}^{-} \ln \left(\mathrm{e}^{x}-16_{-} R\right)\right)-\frac{\ln \left(\mathrm{e}^{x}+1\right)}{16}+\frac{\ln \left(\mathrm{e}^{x}-1\right)}{16}+\frac{\mathrm{I} \ln \left(\mathrm{e}^{x}-\mathrm{I}\right)}{16}-\frac{\mathrm{I} \ln \left(\mathrm{e}^{x}+\mathrm{I}\right)}{16}
$$

Problem 60: Unable to integrate problem.

$$
\int \mathrm{e}^{c(b x+a)} \tanh (x e+d)^{3} \mathrm{~d} x
$$

Optimal(type 5, 157 leaves, 6 steps):

$$
\begin{aligned}
& \frac{\mathrm{e}^{c(b x+a)}}{b c}-\frac{6 \mathrm{e}^{c(b x+a)} \operatorname{hypergeom}\left(\left[1, \frac{b c}{2 e}\right],\left[1+\frac{b c}{2 e}\right],-\mathrm{e}^{2 x e+2 d}\right)}{b c}+\frac{12 \mathrm{e}^{c(b x+a)} \text { hypergeom }\left(\left[2, \frac{b c}{2 e}\right],\left[1+\frac{b c}{2 e}\right],-\mathrm{e}^{2 x e+2 d}\right)}{b c} \\
& \quad-\frac{8 \mathrm{e}^{c(b x+a)} \text { hypergeom }\left(\left[3, \frac{b c}{2 e}\right],\left[1+\frac{b c}{2 e}\right],-\mathrm{e}^{2 x e+2 d}\right)}{b c}
\end{aligned}
$$

Result(type 8, 19 leaves):

$$
\int \mathrm{e}^{c(b x+a)} \tanh (x e+d)^{3} \mathrm{~d} x
$$

Problem 61: Unable to integrate problem.

$$
\int \mathrm{e}^{c(b x+a)} \tanh (x e+d) \mathrm{d} x
$$

Optimal(type 5, 63 leaves, 4 steps):

$$
\frac{\mathrm{e}^{c(b x+a)}}{b c}-\frac{2 \mathrm{e}^{c(b x+a)} \text { hypergeom }\left(\left[1, \frac{b c}{2 e}\right],\left[1+\frac{b c}{2 e}\right],-\mathrm{e}^{2 x e+2 d}\right)}{b c}
$$

Result(type 8, 17 leaves):

$$
\int \mathrm{e}^{c(b x+a)} \tanh (x e+d) \mathrm{d} x
$$

Problem 62: Unable to integrate problem.

$$
\int \mathrm{e}^{c(b x+a)} \operatorname{coth}(x e+d) \mathrm{d} x
$$

Optimal(type 5, 61 leaves, 4 steps):

$$
\frac{\mathrm{e}^{c(b x+a)}}{b c}-\frac{2 \mathrm{e}^{c(b x+a)} \text { hypergeom }\left(\left[1, \frac{b c}{2 e}\right],\left[1+\frac{b c}{2 e}\right], \mathrm{e}^{2 x e+2 d}\right)}{b c}
$$

Result(type 8, 17 leaves):

$$
\int \mathrm{e}^{c(b x+a)} \operatorname{coth}(x e+d) \mathrm{d} x
$$

Problem 63: Unable to integrate problem.

$$
\int \mathrm{e}^{c(b x+a)} \operatorname{coth}(x e+d)^{3} \mathrm{~d} x
$$

Optimal(type 5, 151 leaves, 6 steps):
$\frac{\mathrm{e}^{c(b x+a)}}{b c}-\frac{6 \mathrm{e}^{c(b x+a)} \text { hypergeom }\left(\left[1, \frac{b c}{2 e}\right],\left[1+\frac{b c}{2 e}\right], \mathrm{e}^{2 x e+2 d}\right)}{b c}+\frac{12 \mathrm{e}^{c(b x+a)} \text { hypergeom }\left(\left[2, \frac{b c}{2 e}\right],\left[1+\frac{b c}{2 e}\right], \mathrm{e}^{2 x e+2 d}\right)}{b c}$

$$
-\frac{8 \mathrm{e}^{c(b x+a)} \text { hypergeom }\left(\left[3, \frac{b c}{2 e}\right],\left[1+\frac{b c}{2 e}\right], \mathrm{e}^{2 x e+2 d}\right)}{b c}
$$

Result(type 8, 19 leaves):

$$
\int \mathrm{e}^{c(b x+a)} \operatorname{coth}(x e+d)^{3} \mathrm{~d} x
$$

Test results for the 71 problems in "6.3.7 (d hyper)^m (a+b (c tanh)^n)^p.txt"
Problem 4: Result more than twice size of optimal antiderivative.

$$
\int \sinh (d x+c)^{3}\left(a+b \tanh (d x+c)^{2}\right)^{2} d x
$$

Optimal(type 3, 73 leaves, 3 steps):

$$
-\frac{(a+b)(a+3 b) \cosh (d x+c)}{d}+\frac{(a+b)^{2} \cosh (d x+c)^{3}}{3 d}-\frac{b(2 a+3 b) \operatorname{sech}(d x+c)}{d}+\frac{b^{2} \operatorname{sech}(d x+c)^{3}}{3 d}
$$

Result(type 3, 161 leaves):
$\frac{1}{d}\left(a^{2}\left(-\frac{2}{3}+\frac{\sinh (d x+c)^{2}}{3}\right) \cosh (d x+c)+2 b a\left(\frac{\sinh (d x+c)^{4}}{3 \cosh (d x+c)}+\frac{4 \sinh (d x+c)^{2}}{3 \cosh (d x+c)}-\frac{8 \cosh (d x+c)}{3}\right)+b^{2}\left(\frac{\sinh (d x+c)^{6}}{3 \cosh (d x+c)^{3}}\right.\right.$

$$
\left.\left.-\frac{2 \sinh (d x+c)^{4}}{\cosh (d x+c)^{3}}-\frac{8 \sinh (d x+c)^{2}}{3 \cosh (d x+c)^{3}}+\frac{16 \sinh (d x+c)^{2}}{3 \cosh (d x+c)}-\frac{16 \cosh (d x+c)}{3}\right)\right)
$$

Problem 8: Result more than twice size of optimal antiderivative.

$$
\int \sinh (d x+c)^{3}\left(a+b \tanh (d x+c)^{2}\right)^{3} d x
$$

Optimal(type 3, 99 leaves, 3 steps):

$$
\begin{aligned}
& -\frac{(a+b)^{2}(a+4 b) \cosh (d x+c)}{d}+\frac{(a+b)^{3} \cosh (d x+c)^{3}}{3 d}-\frac{3 b(a+b)(a+2 b) \operatorname{sech}(d x+c)}{d}+\frac{b^{2}(3 a+4 b) \operatorname{sech}(d x+c)^{3}}{3 d} \\
& \quad-\frac{b^{3} \operatorname{sech}(d x+c)^{5}}{5 d}
\end{aligned}
$$

Result(type 3, 286 leaves):
$\frac{1}{d}\left(a^{3}\left(-\frac{2}{3}+\frac{\sinh (d x+c)^{2}}{3}\right) \cosh (d x+c)+3 a^{2} b\left(\frac{\sinh (d x+c)^{4}}{3 \cosh (d x+c)}+\frac{4 \sinh (d x+c)^{2}}{3 \cosh (d x+c)}-\frac{8 \cosh (d x+c)}{3}\right)+3 a b^{2}\left(\frac{\sinh (d x+c)^{6}}{3 \cosh (d x+c)^{3}}\right.\right.$

$$
\begin{aligned}
& \left.-\frac{2 \sinh (d x+c)^{4}}{\cosh (d x+c)^{3}}-\frac{8 \sinh (d x+c)^{2}}{3 \cosh (d x+c)^{3}}+\frac{16 \sinh (d x+c)^{2}}{3 \cosh (d x+c)}-\frac{16 \cosh (d x+c)}{3}\right)+b^{3}\left(\frac{\sinh (d x+c)^{8}}{3 \cosh (d x+c)^{5}}-\frac{8 \sinh (d x+c)^{6}}{3 \cosh (d x+c)^{5}}-\frac{16 \sinh (d x+c)^{4}}{\cosh (d x+c)^{5}}\right. \\
& \left.\left.-\frac{64 \sinh (d x+c)^{2}}{5 \cosh (d x+c)^{5}}+\frac{128 \sinh (d x+c)^{2}}{15 \cosh (d x+c)^{3}}+\frac{128 \sinh (d x+c)^{2}}{15 \cosh (d x+c)}-\frac{128 \cosh (d x+c)}{15}\right)\right)
\end{aligned}
$$

Problem 12: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (d x+c)^{2}}{\left(a+b \tanh (d x+c)^{2}\right)^{2}} d x
$$

Optimal(type 3, 118 leaves, 6 steps):

$$
-\frac{(a-3 b) x}{2(a+b)^{3}}-\frac{(3 a-b) \arctan \left(\frac{\sqrt{b} \tanh (d x+c)}{\sqrt{a}}\right) \sqrt{b}}{2(a+b)^{3} d \sqrt{a}}+\frac{\cosh (d x+c) \sinh (d x+c)}{2(a+b) d\left(a+b \tanh (d x+c)^{2}\right)}-\frac{b \tanh (d x+c)}{(a+b)^{2} d\left(a+b \tanh (d x+c)^{2}\right)}
$$

Result(type 3, 1127 leaves):

$$
\begin{aligned}
& \frac{1}{2 d(a+b)^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{2}}+\frac{1}{2 d(a+b)^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}+\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right) a}{2 d(a+b)^{3}}-\frac{3 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right) b}{2 d(a+b)^{3}} \\
& -\frac{b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3} a}{d(a+b)^{3}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)} \\
& -\frac{b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{d(a+b)^{3}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)} \\
& -\frac{b a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{d(a+b)^{3}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)}
\end{aligned}
$$

$$
-\frac{b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{d(a+b)^{3}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)}+\frac{3 b a^{2} \arctan \left(\frac{2}{\sqrt{(2 \sqrt{b(a+b)}+a+2 b) a}}\right)}{2 d(a+b)^{3} \sqrt{b(a+b)} \sqrt{(2 \sqrt{b(a+b)}+a+2 b) a}}
$$

$$
\begin{aligned}
& +\frac{3 b a \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{2 d(a+b)^{3} \sqrt{(2 \sqrt{b(a+b)}+a+2 b) a}}\right)}{2 \sqrt{b(a+b)}+a+2 b) a}+\frac{b^{2} a \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{(2 \sqrt{b(a+b)}+a+2 b) a}}\right)}{d(a+b)^{3} \sqrt{b(a+b)} \sqrt{(2 \sqrt{b(a+b)}+a+2 b) a}} \\
& +\frac{3 b a^{2} \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{(2 \sqrt{b(a+b)}-a-2 b) a}}\right) \quad-3 b a \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{(2 \sqrt{b(a+b)}-a-2 b) a}}\right)}{(-2)} \\
& 2 d(a+b)^{3} \sqrt{b(a+b)} \sqrt{(2 \sqrt{b(a+b)}-a-2 b) a}-\overline{2 d(a+b)^{3} \sqrt{(2 \sqrt{b(a+b)}-a-2 b) a}} \\
& +\frac{b^{2} a \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{(2 \sqrt{b(a+b)}-a-2 b) a}}\right)}{d(a+b)^{3} \sqrt{b(a+b)} \sqrt{(2 \sqrt{b(a+b)}-a-2 b) a}}-\frac{b^{2} \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{(2 \sqrt{b(a+b)}+a+2 b) a}}\right)}{2 d(a+b)^{3} \sqrt{(2 \sqrt{b(a+b)}+a+2 b) a}} \\
& -\frac{b^{3} \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{2 d(a+b)^{3} \sqrt{b(a+b)} \sqrt{(2 \sqrt{b(a+b)}+a+2 b) a}}\right)}{2 \sqrt{b(a+b)}+a+2 b) a}+\frac{b^{2} \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{(2 \sqrt{b(a+b)}-a-2 b) a}}\right)}{2 d(a+b)^{3} \sqrt{(2 \sqrt{b(a+b)}-a-2 b) a}} \\
& -\frac{b^{3} \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{(2 \sqrt{b(a+b)}-a-2 b) a}}\right)}{2 d(a+b)^{3} \sqrt{b(a+b)} \sqrt{(2 \sqrt{b(a+b)}-a-2 b) a}}-\frac{1}{2 d(a+b)^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{2}}+\frac{1}{2 d(a+b)^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)} \\
& -\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right) a}{2 d(a+b)^{3}}+\frac{3 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right) b}{2 d(a+b)^{3}}
\end{aligned}
$$

Problem 13: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{csch}(d x+c)^{3}}{\left(a+b \tanh (d x+c)^{2}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 127 leaves, 6 steps):

$$
\frac{(a+4 b) \operatorname{arctanh}(\cosh (d x+c))}{2 a^{3} d}-\frac{\operatorname{coth}(d x+c) \operatorname{csch}(d x+c)}{2 a d\left(a+b-b \operatorname{sech}(d x+c)^{2}\right)}-\frac{b \operatorname{sech}(d x+c)}{a^{2} d\left(a+b-b \operatorname{sech}(d x+c)^{2}\right)}-\frac{(3 a+4 b) \operatorname{arctanh}\left(\frac{\operatorname{sech}(d x+c) \sqrt{b}}{\sqrt{a+b}}\right) \sqrt{b}}{2 a^{3} d \sqrt{a+b}}
$$

Result(type 3, 366 leaves):

$$
\begin{aligned}
& \frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{8 d a^{2}}-\frac{b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{d a^{2}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)} \\
& -\frac{2 b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{d a^{3}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)}
\end{aligned}
$$

$$
-\frac{b}{d a^{2}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)}-\frac{3 b \operatorname{arctanh}\left(\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+2 a+4 b}{4 \sqrt{b a+b^{2}}}\right)}{2 d a^{2} \sqrt{b a+b^{2}}}
$$

$$
-\frac{2 b^{2} \operatorname{arctanh}\left(\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+2 a+4 b}{4 \sqrt{b a+b^{2}}}\right)}{d a^{3} \sqrt{b a+b^{2}}}-\frac{1}{8 d a^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right)}{2 d a^{2}}-\frac{2 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right) b}{d a^{3}}
$$

Problem 14: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (d x+c)^{4}}{\left(a+b \tanh (d x+c)^{2}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 220 leaves, 8 steps):

$$
\begin{aligned}
& \frac{3\left(a^{2}-10 b a+5 b^{2}\right) x}{8(a+b)^{5}}+\frac{3\left(5 a^{2}-10 b a+b^{2}\right) \arctan \left(\frac{\sqrt{b} \tanh (d x+c)}{\sqrt{a}}\right) \sqrt{b}}{8(a+b)^{5} d \sqrt{a}}-\frac{(5 a-3 b) \cosh (d x+c) \sinh (d x+c)}{8(a+b)^{2} d\left(a+b \tanh (d x+c)^{2}\right)^{2}} \\
& \quad+\frac{\cosh (d x+c)^{3} \sinh (d x+c)}{4(a+b) d\left(a+b \tanh (d x+c)^{2}\right)^{2}}+\frac{(7 a-5 b) b \tanh (d x+c)}{8(a+b)^{3} d\left(a+b \tanh (d x+c)^{2}\right)^{2}}+\frac{3(a-b) b \tanh (d x+c)}{2(a+b)^{4} d\left(a+b \tanh (d x+c)^{2}\right)}
\end{aligned}
$$

Result(type ?, 2365 leaves): Display of huge result suppressed!
Problem 15: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{csch}(d x+c)}{\left(a+b \tanh (d x+c)^{2}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 142 leaves, 6 steps):

$$
-\frac{\operatorname{arctanh}(\cosh (d x+c))}{a^{3} d}+\frac{b \operatorname{sech}(d x+c)}{4 a(a+b) d\left(a+b-b \operatorname{sech}(d x+c)^{2}\right)^{2}}+\frac{b(7 a+4 b) \operatorname{sech}(d x+c)}{8 a^{2}(a+b)^{2} d\left(a+b-b \operatorname{sech}(d x+c)^{2}\right)}
$$

$$
+\frac{\left(15 a^{2}+20 b a+8 b^{2}\right) \operatorname{arctanh}\left(\frac{\operatorname{sech}(d x+c) \sqrt{b}}{\sqrt{a+b}}\right) \sqrt{b}}{8 a^{3}(a+b)^{5 / 2} d}
$$

Result(type 3, 1131 leaves):

$$
\begin{array}{r}
4 d\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}\left(a^{2}+2 b a+b^{2}\right) \\
+ \\
+\frac{7 b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}}{d a\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}\left(a^{2}+2 b a+b^{2}\right)} \\
+\frac{4 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}}{}+\frac{\left.2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}\left(a^{2}+2 b a+b^{2}\right)}{4 d\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}\left(a^{2}+2 b a+b^{2}\right)} \\
+ \\
+\frac{45 b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}}{2 d a\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}\left(a^{2}+2 b a+b^{2}\right)} \\
+
\end{array}
$$

$$
\begin{aligned}
& +\frac{17 b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{d a\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}\left(a^{2}+2 b a+b^{2}\right)} \\
& +\frac{8 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{d a^{2}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}\left(a^{2}+2 b a+b^{2}\right)} \\
& +\frac{9 b}{4 d\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}\left(a^{2}+2 b a+b^{2}\right)} \\
& +\frac{3 b^{2}}{2 d a\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}\left(a^{2}+2 b a+b^{2}\right)} \\
& +\frac{15 b \operatorname{arctanh}\left(\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+2 a+4 b}{4 \sqrt{b a+b^{2}}}\right)}{4 b^{2} \operatorname{arctanh}\left(\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+2 a+4 b}{4 \sqrt{b a+b^{2}}}\right)} \\
& \begin{array}{l}
8 d a\left(a^{2}+2 b a+b^{2}\right) \sqrt{b a+b^{2}} \\
+\frac{b^{3} \operatorname{arctanh}\left(\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+2 a+4 b}{4 \sqrt{b a+b^{2}}}\right)}{d a^{3}\left(a^{2}+2 b a+b^{2}\right) \sqrt{b a+b^{2}}}+\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right)}{d a^{3}}
\end{array}
\end{aligned}
$$

Problem 16: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{csch}(d x+c)^{3}}{\left(a+b \tanh (d x+c)^{2}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 178 leaves, 7 steps):
$\frac{(a+6 b) \operatorname{arctanh}(\cosh (d x+c))}{2 a^{4} d}-\frac{\operatorname{coth}(d x+c) \operatorname{csch}(d x+c)}{2 a d\left(a+b-b \operatorname{sech}(d x+c)^{2}\right)^{2}}-\frac{3 b \operatorname{sech}(d x+c)}{4 a^{2} d\left(a+b-b \operatorname{sech}(d x+c)^{2}\right)^{2}}-\frac{b(11 a+12 b) \operatorname{sech}(d x+c)}{8 a^{3}(a+b) d\left(a+b-b \operatorname{sech}(d x+c)^{2}\right)}$
$-\frac{\left(15 a^{2}+40 b a+24 b^{2}\right) \operatorname{arctanh}\left(\frac{\operatorname{sech}(d x+c) \sqrt{b}}{\sqrt{a+b}}\right) \sqrt{b}}{8 a^{4}(a+b)^{3 / 2} d}$
Result(type 3, 1082 leaves):

$$
\begin{aligned}
& \frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{8 d a^{3}}-\frac{9 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}}{4 d a\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}(a+b)} \\
& 8 b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6} \\
& d a^{2}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}(a+b) \\
& 6 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6} \\
& d a^{3}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}(a+b) \\
& 27 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} \\
& 4 d a\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}(a+b) \\
& 51 b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} \\
& 2 d a^{2}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}(a+b) \\
& -\frac{38 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}}{d a^{3}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}(a+b)} \\
& -\frac{20 b^{4} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}}{d a^{4}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}(a+b)} \\
& 27 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} \\
& 4 d a\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}(a+b) \\
& 20 b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} \\
& d a^{2}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}(a+b)
\end{aligned}
$$

Problem 23: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{csch}(d x+c)^{2}\left(a+b \tanh (d x+c)^{3}\right)^{3} \mathrm{~d} x
$$

Optimal(type 3, 65 leaves, 3 steps):

$$
-\frac{a^{3} \operatorname{coth}(d x+c)}{d}+\frac{3 a^{2} b \tanh (d x+c)^{2}}{2 d}+\frac{3 a b^{2} \tanh (d x+c)^{5}}{5 d}+\frac{b^{3} \tanh (d x+c)^{8}}{8 d}
$$

Result(type 3, 222 leaves):
$\frac{1}{d}\left(-\operatorname{coth}(d x+c) a^{3}+\frac{3 a^{2} b \sinh (d x+c)^{2}}{2 \cosh (d x+c)^{2}}+3 a b^{2}\left(-\frac{\sinh (d x+c)^{3}}{2 \cosh (d x+c)^{5}}-\frac{3 \sinh (d x+c)}{8 \cosh (d x+c)^{5}}\right.\right.$

$$
\left.+\frac{3\left(\frac{8}{15}+\frac{\operatorname{sech}(d x+c)^{4}}{5}+\frac{4 \operatorname{sech}(d x+c)^{2}}{15}\right) \tanh (d x+c)}{8}\right)+b^{3}\left(-\frac{\sinh (d x+c)^{6}}{2 \cosh (d x+c)^{8}}-\frac{3 \sinh (d x+c)^{4}}{4 \cosh (d x+c)^{8}}-\frac{3 \sinh (d x+c)^{2}}{8 \cosh (d x+c)^{8}}\right.
$$

$$
\left.\left.+\frac{\sinh (d x+c)^{2}}{8 \cosh (d x+c)^{6}}+\frac{\sinh (d x+c)^{2}}{8 \cosh (d x+c)^{4}}+\frac{\sinh (d x+c)^{2}}{8 \cosh (d x+c)^{2}}\right)\right)
$$

$$
\begin{aligned}
& -\frac{14 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{d a^{3}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}(a+b)} \\
& -\frac{9 b}{4 d a\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}(a+b)} \\
& -\frac{5 b^{2}}{2 d a^{2}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}(a+b)} \\
& -\frac{5 b^{2} \operatorname{arctanh}\left(\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+2 a+4 b}{4 \sqrt{b a+b^{2}}}\right)}{d a^{3}(a+b) \sqrt{b a+b^{2}}}-\frac{3 b^{3} \operatorname{arctanh}\left(\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+2 a+4 b}{4 \sqrt{b a+b^{2}}}\right)}{d a^{4}(a+b) \sqrt{b a+b^{2}}}-\frac{1}{8 d a^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}} \\
& -\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right)}{2 d a^{3}}-\frac{3 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right) b}{d a^{4}}
\end{aligned}
$$

Problem 24: Result is not expressed in closed-form.

$$
\int \frac{\operatorname{csch}(d x+c)^{4}}{a+b \tanh (d x+c)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 174 leaves, 12 steps):
$\frac{\operatorname{coth}(d x+c)}{a d}-\frac{\operatorname{coth}(d x+c)^{3}}{3 a d}-\frac{b \ln (\tanh (d x+c))}{a^{2} d}-\frac{b^{1 / 3} \ln \left(a^{1 / 3}+b^{1 / 3} \tanh (d x+c)\right)}{3 a^{4 / 3} d}$
$+\frac{b^{1 / 3} \ln \left(a^{2 / 3}-a^{1 / 3} b^{1 / 3} \tanh (d x+c)+b^{2 / 3} \tanh (d x+c)^{2}\right)}{6 a^{4 / 3} d}+\frac{b \ln \left(a+b \tanh (d x+c)^{3}\right)}{3 a^{2} d}$
$-\frac{b^{1 / 3} \arctan \left(\frac{\left(a^{1 / 3}-2 b^{1 / 3} \tanh (d x+c)\right) \sqrt{3}}{3 a^{1 / 3}}\right) \sqrt{3}}{3 a^{4 / 3} d}$
Result(type 7, 186 leaves):

$$
\begin{aligned}
& -\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{24 d a}+\frac{3 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{8 d a}-\frac{1}{24 d a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}+\frac{3}{8 d a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}-\frac{b \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right)}{d a^{2}} \\
& +\frac{b\left(\sum_{R=\operatorname{RootOf}\left(a \not Z^{6}+3 a Z^{4}+8 b \not Z^{3}+3 a \not Z^{2}+a\right)}\right)}{3 d a^{2}}
\end{aligned}
$$

Problem 26: Result more than twice size of optimal antiderivative.

$$
\int \cosh (d x+c)^{2}\left(a+b \tanh (d x+c)^{2}\right)^{2} d x
$$

Optimal(type 3, 47 leaves, 5 steps):

$$
\frac{(a-3 b)(a+b) x}{2}+\frac{(a+b)^{2} \cosh (d x+c) \sinh (d x+c)}{2 d}+\frac{b^{2} \tanh (d x+c)}{d}
$$

Result(type 3, 95 leaves):

$$
\begin{aligned}
& \frac{1}{d}\left(a^{2}\left(\frac{\cosh (d x+c) \sinh (d x+c)}{2}+\frac{d x}{2}+\frac{c}{2}\right)+2 b a\left(\frac{\cosh (d x+c) \sinh (d x+c)}{2}-\frac{d x}{2}-\frac{c}{2}\right)+b^{2}\left(\frac{\sinh (d x+c)^{3}}{2 \cosh (d x+c)}-\frac{3 d x}{2}-\frac{3 c}{2}\right.\right. \\
& \left.\left.\quad+\frac{3 \tanh (d x+c)}{2}\right)\right)
\end{aligned}
$$

Problem 27: Result more than twice size of optimal antiderivative.

$$
\int \cosh (d x+c)\left(a+b \tanh (d x+c)^{2}\right)^{2} \mathrm{~d} x
$$

Optimal(type 3, 56 leaves, 5 steps):

$$
-\frac{b(4 a+3 b) \arctan (\sinh (d x+c))}{2 d}+\frac{(a+b)^{2} \sinh (d x+c)}{d}+\frac{b^{2} \operatorname{sech}(d x+c) \tanh (d x+c)}{2 d}
$$

Result(type 3, 121 leaves):
$\frac{\sinh (d x+c) a^{2}}{d}+\frac{2 \sinh (d x+c) a b}{d}-\frac{4 b a \arctan \left(\mathrm{e}^{d x+c}\right)}{d}+\frac{b^{2} \sinh (d x+c)^{3}}{d \cosh (d x+c)^{2}}+\frac{3 b^{2} \sinh (d x+c)}{d \cosh (d x+c)^{2}}-\frac{3 b^{2} \operatorname{sech}(d x+c) \tanh (d x+c)}{2 d}$

$$
-\frac{3 b^{2} \arctan \left(\mathrm{e}^{d x+c}\right)}{d}
$$

Problem 28: Result more than twice size of optimal antiderivative.

$$
\int \cosh (d x+c)\left(a+b \tanh (d x+c)^{2}\right)^{3} \mathrm{~d} x
$$

Optimal(type 3, 93 leaves, 6 steps):
$-\frac{3 b\left(4(a+b)^{2}+(2 a+b)^{2}\right) \arctan (\sinh (d x+c))}{8 d}+\frac{(a+b)^{3} \sinh (d x+c)}{d}+\frac{3 b^{2}(4 a+3 b) \operatorname{sech}(d x+c) \tanh (d x+c)}{8 d}$
$-\frac{b^{3} \operatorname{sech}(d x+c)^{3} \tanh (d x+c)}{4 d}$
Result(type 3, 256 leaves):
$\frac{\sinh (d x+c) a^{3}}{d}+\frac{3 a^{2} b \sinh (d x+c)}{d}-\frac{6 a^{2} b \arctan \left(\mathrm{e}^{d x+c}\right)}{d}+\frac{3 a b^{2} \sinh (d x+c)^{3}}{d \cosh (d x+c)^{2}}+\frac{9 a b^{2} \sinh (d x+c)}{d \cosh (d x+c)^{2}}-\frac{9 a b^{2} \operatorname{sech}(d x+c) \tanh (d x+c)}{2 d}$
$-\frac{9 a b^{2} \arctan \left(\mathrm{e}^{d x+c}\right)}{d}+\frac{b^{3} \sinh (d x+c)^{5}}{d \cosh (d x+c)^{4}}+\frac{5 b^{3} \sinh (d x+c)^{3}}{d \cosh (d x+c)^{4}}+\frac{5 b^{3} \sinh (d x+c)}{d \cosh (d x+c)^{4}}-\frac{5 b^{3} \operatorname{sech}(d x+c)^{3} \tanh (d x+c)}{4 d}$
$-\frac{15 b^{3} \operatorname{sech}(d x+c) \tanh (d x+c)}{8 d}-\frac{15 b^{3} \arctan \left(\mathrm{e}^{d x+c}\right)}{4 d}$

Problem 29: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{sech}(d x+c)\left(a+b \tanh (d x+c)^{2}\right)^{3} d x
$$

Optimal(type 3, 141 leaves, 5 steps):
$\frac{(2 a+b)\left(8 a^{2}+8 b a+5 b^{2}\right) \arctan (\sinh (d x+c))}{16 d}-\frac{b\left(44 a^{2}+44 b a+15 b^{2}\right) \operatorname{sech}(d x+c) \tanh (d x+c)}{48 d}$

$$
-\frac{5 b(2 a+b) \operatorname{sech}(d x+c)^{3}\left(a+(a+b) \sinh (d x+c)^{2}\right) \tanh (d x+c)}{24 d}-\frac{b \operatorname{sech}(d x+c)^{5}\left(a+(a+b) \sinh (d x+c)^{2}\right)^{2} \tanh (d x+c)}{6 d}
$$

Result(type 3, 333 leaves):
$\frac{2 a^{3} \arctan \left(\mathrm{e}^{d x+c}\right)}{d}-\frac{3 a^{2} b \sinh (d x+c)}{d \cosh (d x+c)^{2}}+\frac{3 a^{2} b \operatorname{sech}(d x+c) \tanh (d x+c)}{2 d}+\frac{3 a^{2} b \arctan \left(\mathrm{e}^{d x+c}\right)}{d}-\frac{3 a b^{2} \sinh (d x+c)^{3}}{d \cosh (d x+c)^{4}}-\frac{3 a b^{2} \sinh (d x+c)}{d \cosh (d x+c)^{4}}$
$+\frac{3 a b^{2} \tanh (d x+c) \operatorname{sech}(d x+c)^{3}}{4 d}+\frac{9 a b^{2} \operatorname{sech}(d x+c) \tanh (d x+c)}{8 d}+\frac{9 a b^{2} \arctan \left(\mathrm{e}^{d x+c}\right)}{4 d}-\frac{b^{3} \sinh (d x+c)^{5}}{d \cosh (d x+c)^{6}}-\frac{5 b^{3} \sinh (d x+c)^{3}}{3 d \cosh (d x+c)^{6}}$

$$
-\frac{b^{3} \sinh (d x+c)}{d \cosh (d x+c)^{6}}+\frac{b^{3} \tanh (d x+c) \operatorname{sech}(d x+c)^{5}}{6 d}+\frac{5 b^{3} \operatorname{sech}(d x+c)^{3} \tanh (d x+c)}{24 d}+\frac{5 b^{3} \operatorname{sech}(d x+c) \tanh (d x+c)}{16 d}+\frac{5 b^{3} \arctan \left(\mathrm{e}^{d x+c}\right)}{8 d}
$$

Problem 30: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{sech}(d x+c)^{2}\left(a+b \tanh (d x+c)^{2}\right)^{3} \mathrm{~d} x
$$

Optimal(type 3, 63 leaves, 3 steps):

$$
\frac{a^{3} \tanh (d x+c)}{d}+\frac{a^{2} b \tanh (d x+c)^{3}}{d}+\frac{3 a b^{2} \tanh (d x+c)^{5}}{5 d}+\frac{b^{3} \tanh (d x+c)^{7}}{7 d}
$$

Result(type 3, 226 leaves):
$\frac{1}{d}\left(\tanh (d x+c) a^{3}+3 a^{2} b\left(-\frac{\sinh (d x+c)}{2 \cosh (d x+c)^{3}}+\frac{\left(\frac{2}{3}+\frac{\operatorname{sech}(d x+c)^{2}}{3}\right) \tanh (d x+c)}{2}\right)+3 a b^{2}\left(-\frac{\sinh (d x+c)^{3}}{2 \cosh (d x+c)^{5}}-\frac{3 \sinh (d x+c)}{8 \cosh (d x+c)^{5}}\right.\right.$

$$
\begin{aligned}
& \left.+\frac{3\left(\frac{8}{15}+\frac{\operatorname{sech}(d x+c)^{4}}{5}+\frac{4 \operatorname{sech}(d x+c)^{2}}{15}\right) \tanh (d x+c)}{8}\right)+b^{3}\left(-\frac{\sinh (d x+c)^{5}}{2 \cosh (d x+c)^{7}}-\frac{5 \sinh (d x+c)^{3}}{8 \cosh (d x+c)^{7}}-\frac{5 \sinh (d x+c)}{16 \cosh (d x+c)^{7}}\right. \\
& \left.\left.+\frac{5\left(\frac{16}{35}+\frac{\operatorname{sech}(d x+c)^{6}}{7}+\frac{6 \operatorname{sech}(d x+c)^{4}}{35}+\frac{8 \operatorname{sech}(d x+c)^{2}}{35}\right) \tanh (d x+c)}{16}\right)\right)
\end{aligned}
$$

Problem 31: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(d x+c)^{5}}{a+b \tanh (d x+c)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 74 leaves, 5 steps):

$$
-\frac{(2 a+3 b) \arctan (\sinh (d x+c))}{2 b^{2} d}+\frac{(a+b)^{3 / 2} \arctan \left(\frac{\sinh (d x+c) \sqrt{a+b}}{\sqrt{a}}\right)}{b^{2} d \sqrt{a}}-\frac{\operatorname{sech}(d x+c) \tanh (d x+c)}{2 b d}
$$

Result(type 3, 835 leaves):

$$
\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{2}}-\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{2}}-\frac{3 \arctan \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right)}{d b}-\frac{2 \arctan \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right) a}{d b^{2}}
$$

$$
\begin{aligned}
& +\frac{a^{2} \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{(2 \sqrt{b(a+b)}+a+2 b) a}}\right)}{d b^{2} \sqrt{(2 \sqrt{b(a+b)}+a+2 b) a}}+\frac{2 a \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{(2 \sqrt{b(a+b)}+a+2 b) a}}\right)}{d b \sqrt{(2 \sqrt{b(a+b)}+a+2 b) a}}+\frac{\arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{(2 \sqrt{b(a+b)}+a+2 b) a})}\right.}{d \sqrt{(2 \sqrt{b(a+b)}+a+2 b) a}} \\
& +\frac{a^{2} \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{(2 \sqrt{b(a+b)}+a+2 b) a}}\right)}{d b \sqrt{b(a+b)} \sqrt{(2 \sqrt{b(a+b)}+a+2 b) a}}+ \\
& +\frac{2 a \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{(2 \sqrt{b(a+b)}+a+2 b) a}}\right)}{d \sqrt{b(a+b)} \sqrt{(2 \sqrt{b(a+b)}+a+2 b) a}}+ \\
& +\frac{b \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{(2 \sqrt{b(a+b)}+a+2 b) a}}\right)}{d \sqrt{b(a+b)} \sqrt{(2 \sqrt{b(a+b)}+a+2 b) a}} \\
& -\frac{a^{2} \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{(2 \sqrt{b(a+b)}-a-2 b) a}}\right)}{d b^{2} \sqrt{(2 \sqrt{b(a+b)}-a-2 b) a}}-\frac{2 a \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{(2 \sqrt{b(a+b)}-a-2 b) a}}\right)}{d b \sqrt{(2 \sqrt{b(a+b)}-a-2 b) a}}-\frac{\operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{(2 \sqrt{b(a+b)}-a-2 b) a})}\right.}{d \sqrt{(2 \sqrt{b(a+b)}-a-2 b) a}} \\
& +\frac{a^{2} \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{(2 \sqrt{b(a+b)}-a-2 b) a}}\right)}{d b \sqrt{b(a+b)} \sqrt{(2 \sqrt{b(a+b)}-a-2 b) a}}+\frac{2 a \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{(2 \sqrt{b(a+b)}-a-2 b) a}}\right)}{d \sqrt{b(a+b)} \sqrt{(2 \sqrt{b(a+b)}-a-2 b) a}}+\frac{b \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{(2 \sqrt{b(a+b)}-a-2 b) a}}\right)}{d \sqrt{b(a+b)} \sqrt{(2 \sqrt{b(a+b)}-a-2 b) a}}
\end{aligned}
$$

Problem 32: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (d x+c)}{\left(a+b \tanh (d x+c)^{2}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 89 leaves, 5 steps):

Result(type 3, 800 leaves):

$$
\begin{aligned}
& -\frac{1}{d(a+b)^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}-\frac{b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{d(a+b)^{2}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right) a} \\
& +\frac{b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{d(a+b)^{2}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right) a}
\end{aligned}
$$

$$
+\frac{b^{3} \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{-a^{2}-2 b a+2 \sqrt{a^{2} b(a+b)}}}\right)}{2 d(a+b)^{2} \sqrt{a^{2} b(a+b)} \sqrt{-a^{2}-2 b a+2 \sqrt{a^{2} b(a+b)}}}
$$

$$
+\frac{b^{3} \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{a^{2}+2 b a+2 \sqrt{a^{2} b(a+b)}}}\right)}{2 d(a+b)^{2} \sqrt{a^{2} b(a+b)} \sqrt{a^{2}+2 b a+2 \sqrt{a^{2} b(a+b)}}}+\frac{b^{2} \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{a^{2}+2 b a+2 \sqrt{a^{2} b(a+b)}}}\right)}{2 d(a+b)^{2} a \sqrt{a^{2}+2 b a+2 \sqrt{a^{2} b(a+b)}}}
$$

$$
-\frac{1}{d(a+b)^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}
$$

Problem 33: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(d x+c)}{\left(a+b \tanh (d x+c)^{2}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 71 leaves, 3 steps):

$$
\frac{(2 a+b) \arctan \left(\frac{\sinh (d x+c) \sqrt{a+b}}{\sqrt{a}}\right)}{2 a^{3 / 2}(a+b)^{3 / 2} d}+\frac{b \sinh (d x+c)}{2 a(a+b) d\left(a+(a+b) \sinh (d x+c)^{2}\right)}
$$

Result(type 3, 1800 leaves):

$$
b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}
$$

$$
d\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)(a+b) a
$$

$$
\begin{aligned}
& +\frac{b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{d\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)(a+b) a} \\
& +\frac{a^{3} \arctan \left(\frac{\left(a^{3}+a^{2} b\right) \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{a \sqrt{(a+b)\left(a^{3}+3 a^{2} b+2 a b^{2}+2 \sqrt{a^{2} b(a+b)^{3}}\right)}}\right) b}{d \sqrt{a^{2} b(a+b)^{3}}(a+b) \sqrt{(a+b)\left(a^{3}+3 a^{2} b+2 a b^{2}+2 \sqrt{a^{2} b(a+b)^{3}}\right)}} \\
& +\frac{5 a^{2} \arctan \left(\frac{\left(a^{3}+a^{2} b\right) \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{a \sqrt{(a+b)\left(a^{3}+3 a^{2} b+2 a b^{2}+2 \sqrt{a^{2} b(a+b)^{3}}\right)}}\right) b^{2}}{2 d \sqrt{a^{2} b(a+b)^{3}}(a+b) \sqrt{(a+b)\left(a^{3}+3 a^{2} b+2 a b^{2}+2 \sqrt{a^{2} b(a+b)^{3}}\right)}} \\
& +\frac{2 a \arctan \left(\frac{\left(a^{3}+a^{2} b\right) \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{a \sqrt{(a+b)\left(a^{3}+3 a^{2} b+2 a b^{2}+2 \sqrt{a^{2} b(a+b)^{3}}\right)}}\right) b^{3}}{d \sqrt{a^{2} b(a+b)^{3}}(a+b) \sqrt{(a+b)\left(a^{3}+3 a^{2} b+2 a b^{2}+2 \sqrt{a^{2} b(a+b)^{3}}\right)}} \\
& +\frac{\arctan \left(\frac{\left(a^{3}+a^{2} b\right) \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{a \sqrt{(a+b)\left(a^{3}+3 a^{2} b+2 a b^{2}+2 \sqrt{a^{2} b(a+b)^{3}}\right)}}\right) b^{4}}{2 d \sqrt{a^{2} b(a+b)^{3}}(a+b) \sqrt{(a+b)\left(a^{3}+3 a^{2} b+2 a b^{2}+2 \sqrt{a^{2} b(a+b)^{3}}\right)}} \\
& +\frac{a \arctan \left(\frac{\left(a^{3}+a^{2} b\right) \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{a \sqrt{(a+b)\left(a^{3}+3 a^{2} b+2 a b^{2}+2 \sqrt{a^{2} b(a+b)^{3}}\right)}}\right)}{d(a+b) \sqrt{(a+b)\left(a^{3}+3 a^{2} b+2 a b^{2}+2 \sqrt{a^{2} b(a+b)^{3}}\right)}}+\frac{3 \arctan \left(\frac{\left(a^{3}+a^{2} b\right) \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{a \sqrt{(a+b)\left(a^{3}+3 a^{2} b+2 a b^{2}+2 \sqrt{a^{2} b(a+b)^{3}}\right)}}\right) d}{2 d(a+b) \sqrt{(a+b)\left(a^{3}+3 a^{2} b+2 a b^{2}+2 \sqrt{a^{2} b(a+b)^{3}}\right)}} \\
& +\frac{\arctan \left(\frac{\left(a^{3}+a^{2} b\right) \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{a \sqrt{(a+b)\left(a^{3}+3 a^{2} b+2 a b^{2}+2 \sqrt{a^{2} b(a+b)^{3}}\right)}}\right) b^{2}}{2 d a(a+b) \sqrt{(a+b)\left(a^{3}+3 a^{2} b+2 a b^{2}+2 \sqrt{a^{2} b(a+b)^{3}}\right)}}
\end{aligned}
$$

Problem 34: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(d x+c)^{2}}{\left(a+b \tanh (d x+c)^{2}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 54 leaves, 3 steps):

Result(type 3, 553 leaves):

Problem 35: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(d x+c)^{3}}{\left(a+b \tanh (d x+c)^{2}\right)^{2}} \mathrm{~d} x
$$

Optimal (type 3, 60 leaves, 3 steps):

Result (type 3, 406 leaves):

$$
\begin{aligned}
& -\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{d\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right) a} \\
& +\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{d\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right) a}+\frac{\operatorname{arctanh}\left(\frac{b}{\left.\sqrt{-a^{2}-2 b a+2 \sqrt{a^{2} b(a+b)}}\right)}\right.}{2 d \sqrt{a^{2} b(a+b)} \sqrt{-a^{2}-2 b a+2 \sqrt{a^{2} b(a+b)}}} \\
& -\frac{\operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{-a^{2}-2 b a+2 \sqrt{a^{2} b(a+b)}}}\right)}{2 d a \sqrt{-a^{2}-2 b a+2 \sqrt{a^{2} b(a+b)}}}+\frac{\arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{a^{2}+2 b a+2 \sqrt{a^{2} b(a+b)}}}\right) b}{2 d \sqrt{a^{2} b(a+b)} \sqrt{a^{2}+2 b a+2 \sqrt{a^{2} b(a+b)}}}+\frac{\arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{a^{2}+2 b a+2 \sqrt{a^{2} b(a+b)}}}\right)}{2 d a \sqrt{a^{2}+2 b a+2 \sqrt{a^{2} b(a+b)}}}
\end{aligned}
$$

Problem 36: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(d x+c)^{5}}{\left(a+b \tanh (d x+c)^{2}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 90 leaves, 5 steps):

$$
\frac{\arctan (\sinh (d x+c))}{b^{2} d}+\frac{(a+b) \sinh (d x+c)}{2 a b d\left(a+(a+b) \sinh (d x+c)^{2}\right)}-\frac{(2 a-b) \arctan \left(\frac{\sinh (d x+c) \sqrt{a+b}}{\sqrt{a}}\right) \sqrt{a+b}}{2 a^{3 / 2} b^{2} d}
$$

Result(type 3, 1120 leaves):

$$
\begin{aligned}
& \frac{2 \arctan \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right)}{d b^{2}}-\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{d b\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)} \\
& -\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{d\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right) a}
\end{aligned}
$$

Problem 37: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(d x+c)^{7}}{\left(a+b \tanh (d x+c)^{2}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 139 leaves, 6 steps):

$$
-\frac{\operatorname{sech}(d x+c) \tanh (d x+c)}{2 b d\left(a+(a+b) \sinh (d x+c)^{2}\right)}
$$

Result(type 3, 1628 leaves):

$$
\begin{aligned}
& a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3} \\
& d b^{2}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right) \\
& +\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{d b^{2}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)}+\frac{2 a^{2} \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\left.\sqrt{-a^{2}-2 b a+2 \sqrt{a^{2} b(a+b)}}\right)}\right.}{d b^{3} \sqrt{-a^{2}-2 b a+2 \sqrt{a^{2} b(a+b)}}} \\
& -\frac{2 a^{2} \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{a^{2}+2 b a+2 \sqrt{a^{2} b(a+b)}}}\right)}{d b^{3} \sqrt{a^{2}+2 b a+2 \sqrt{a^{2} b(a+b)}}}+\frac{7 a \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{-a^{2}-2 b a+2 \sqrt{a^{2} b(a+b)}}}\right)}{2 d b^{2} \sqrt{-a^{2}-2 b a+2 \sqrt{a^{2} b(a+b)}}}-\frac{7 a \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{a^{2}+2 b a+2 \sqrt{a^{2} b(a+b)}}}\right)}{2 d b^{2} \sqrt{a^{2}+2 b a+2 \sqrt{a^{2} b(a+b)}}} \\
& -\frac{a \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{-a^{2}-2 b a+2 \sqrt{a^{2} b(a+b)}}}\right)}{d \sqrt{a^{2} b(a+b)} \sqrt{-a^{2}-2 b a+2 \sqrt{a^{2} b(a+b)}}}+\frac{\operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{-a^{2}-2 b a+2 \sqrt{a^{2} b(a+b)}}}\right) b}{2 d \sqrt{a^{2} b(a+b)} \sqrt{-a^{2}-2 b a+2 \sqrt{a^{2} b(a+b)}}} \\
& -\frac{a \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{a^{2}+2 b a+2 \sqrt{a^{2} b(a+b)}}}\right)}{d \sqrt{a^{2} b(a+b)} \sqrt{a^{2}+2 b a+2 \sqrt{a^{2} b(a+b)}}}+\frac{\arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{a^{2}+2 b a+2 \sqrt{a^{2} b(a+b)}}}\right) b}{2 d \sqrt{a^{2} b(a+b)} \sqrt{a^{2}+2 b a+2 \sqrt{a^{2} b(a+b)}}} \\
& -\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{d\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right) a}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{d\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right) a}-\frac{\operatorname{arctanh}\left(\frac{2}{\left.\sqrt{-a^{2}-2 b a+2 \sqrt{a^{2} b(a+b)}}\right)}\right.}{2 d a \sqrt{-a^{2}-2 b a+2 \sqrt{a^{2} b(a+b)}}} \\
& +\frac{\arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{a^{2}+2 b a+2 \sqrt{a^{2} b(a+b)}}}\right)}{2 d a \sqrt{a^{2}+2 b a+2 \sqrt{a^{2} b(a+b)}}}+\frac{5 \arctan \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right)}{d b^{2}}-\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{2}}+\frac{d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{2}}{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)} \\
& +\frac{4 \arctan \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right) a}{d b^{3}}-\frac{2 a^{3} \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{-a^{2}-2 b a+2 \sqrt{a^{2} b(a+b)}}}\right)}{d b^{2} \sqrt{a^{2} b(a+b)} \sqrt{-a^{2}-2 b a+2 \sqrt{a^{2} b(a+b)}}}-\frac{2 a^{3} \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{a^{2}+2 b a+2 \sqrt{a^{2} b(a+b)}}}\right)}{d b^{2} \sqrt{a^{2} b(a+b)} \sqrt{a^{2}+2 b a+2 \sqrt{a^{2} b(a+b)}}} \\
& -\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{d b\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)} \\
& +\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{d b\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)}+\frac{\operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{-a^{2}-2 b a+2 \sqrt{a^{2} b(a+b)}}}\right)}{d b \sqrt{-a^{2}-2 b a+2 \sqrt{a^{2} b(a+b)}}} \\
& -\frac{\arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{a^{2}+2 b a+2 \sqrt{a^{2} b(a+b)}}}\right)}{d b \sqrt{a^{2}+2 b a+2 \sqrt{a^{2} b(a+b)}}}-\frac{7 a^{2} \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{-a^{2}-2 b a+2 \sqrt{a^{2} b(a+b)}}}\right)}{2 d b \sqrt{a^{2} b(a+b)} \sqrt{-a^{2}-2 b a+2 \sqrt{a^{2} b(a+b)}}} \\
& -\frac{7 a^{2} \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{a^{2}+2 b a+2 \sqrt{a^{2} b(a+b)}}}\right)}{2 d b \sqrt{a^{2} b(a+b)} \sqrt{a^{2}+2 b a+2 \sqrt{a^{2} b(a+b)}}}
\end{aligned}
$$

$$
\int \frac{\cosh (d x+c)}{\left(a+b \tanh (d x+c)^{2}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 140 leaves, 6 steps):

$$
\begin{aligned}
& \frac{3 b\left(8 a^{2}+4 b a+b^{2}\right) \arctan \left(\frac{\sinh (d x+c) \sqrt{a+b}}{\sqrt{a}}\right)}{8 a^{5 / 2}(a+b)^{7 / 2} d}+\frac{\sinh (d x+c)}{(a+b)^{3} d}+\frac{b^{3} \sinh (d x+c)}{4 a(a+b)^{3} d\left(a+(a+b) \sinh (d x+c)^{2}\right)^{2}} \\
& \quad+\frac{3 b^{2}(4 a+b) \sinh (d x+c)}{8 a^{2}(a+b)^{3} d\left(a+(a+b) \sinh (d x+c)^{2}\right)}
\end{aligned}
$$

Result(type 3, 1801 leaves):

$$
\begin{aligned}
& -\frac{1}{d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}-\frac{3 b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{7}}{d(a+b)^{3}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}} \\
& -\frac{5 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{7}}{4 d(a+b)^{3}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2} a} \\
& -\frac{3 b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{5}}{d(a+b)^{3}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}} \\
& -\frac{45 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{5}}{4 d(a+b)^{3}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2} a} \\
& -\frac{3 b^{4} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{5}}{d(a+b)^{3}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2} a^{2}} \\
& \\
& +\frac{3 b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{d(a+b)^{3}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
+\frac{45 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{4 d(a+b)^{3}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2} a} \\
+\frac{3 b^{4} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{d(a+b)^{3}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2} a^{2}} \\
+\frac{3 b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{d(a+b)^{3}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}} \\
+\frac{5 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{4 d(a+b)^{3}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2} a}
\end{array} \\
& +\frac{3 b^{2} a^{3} \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a^{2}}{\sqrt{\left(a^{3}+2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}}\right)}{d(a+b)^{3} \sqrt{a^{4} b(a+b)} \sqrt{\left(a^{3}+2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}}+\frac{3 b^{3} a^{2} \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a^{2}}{\sqrt{\left(a^{3}+2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}}\right)}{2 d(a+b)^{3} \sqrt{a^{4} b(a+b)} \sqrt{\left(a^{3}+2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}} \\
& +\frac{3 b^{4} a \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a^{2}}{\sqrt{\left(a^{3}+2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}}\right)}{8 d(a+b)^{3} \sqrt{a^{4} b(a+b)} \sqrt{\left(a^{3}+2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}}+\frac{3 b a \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a^{2}}{\sqrt{\left(a^{3}+2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}}\right)}{d(a+b)^{3} \sqrt{\left(a^{3}+2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}} \\
& +\frac{3 b^{2} \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a^{2}}{\sqrt{\left(a^{3}+2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}}\right)}{2 d(a+b)^{3} \sqrt{\left(a^{3}+2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}}+\frac{3 b^{3} \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a^{2}}{\sqrt{\left(a^{3}+2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}}\right)}{8 d(a+b)^{3} a \sqrt{\left(a^{3}+2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}} \\
& +\frac{3 b^{2} a^{3} \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a^{2}}{\sqrt{\left(-a^{3}-2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}}\right)}{d(a+b)^{3} \sqrt{a^{4} b(a+b)} \sqrt{\left(-a^{3}-2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}}+\frac{3 b^{3} a^{2} \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a^{2}}{\sqrt{\left(-a^{3}-2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}}\right)}{2 d(a+b)^{3} \sqrt{a^{4} b(a+b)} \sqrt{\left(-a^{3}-2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{3 b^{4} a \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a^{2}}{\sqrt{\left(-a^{3}-2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}}\right)}{8 d(a+b)^{3} \sqrt{a^{4} b(a+b)} \sqrt{\left(-a^{3}-2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}}-\frac{3 b a \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a^{2}}{\sqrt{\left(-a^{3}-2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}}\right)}{d(a+b)^{3} \sqrt{\left(-a^{3}-2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}} \\
& -\frac{3 b^{2} \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a^{2}}{\left.\sqrt{\left(-a^{3}-2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}\right)}\right.}{2 d(a+b)^{3} \sqrt{\left(-a^{3}-2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}}-\frac{3 b^{3} \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a^{2}}{\left.\sqrt{\left(-a^{3}-2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}\right)}\right.}{8 d(a+b)^{3} a \sqrt{\left(-a^{3}-2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}} \\
& -\frac{1}{d(a+b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}
\end{aligned}
$$

Problem 39: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(d x+c)^{5}}{\left(a+b \tanh (d x+c)^{2}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 90 leaves, 4 steps):

Result(type 3, 707 leaves):

$$
\begin{aligned}
& 4 d\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2} a \\
& +\frac{3 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{5}}{4 d\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2} a} \\
& -\frac{3 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{5}}{d\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2} a^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{3 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{4 d\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2} a} \\
& +\frac{3 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{d\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2} a^{2}} \\
& +\frac{5 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{4 d\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2} a}+\frac{3 a \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a^{2}}{\sqrt{\left(a^{3}+2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}}\right) b}{8 d \sqrt{a^{4} b(a+b)} \sqrt{\left(a^{3}+2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}} \\
& +\frac{3 \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a^{2}}{\sqrt{\left(a^{3}+2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}}\right)}{8 d a \sqrt{\left(a^{3}+2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}}+\frac{3 a \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a^{2}}{\sqrt{\left(-a^{3}-2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}}\right) b}{8 d \sqrt{a^{4} b(a+b)} \sqrt{\left(-a^{3}-2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}} \\
& -\frac{3 \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a^{2}}{\sqrt{\left(-a^{3}-2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}}\right)}{\left(-\frac{a^{2}}{}\right.} \\
& 8 d a \sqrt{\left(-a^{3}-2 a^{2} b+2 \sqrt{a^{4} b(a+b)}\right) a}
\end{aligned}
$$

Problem 40: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(d x+c)^{7}}{\left(a+b \tanh (d x+c)^{2}\right)^{3}} d x
$$

Optimal(type 3, 142 leaves, 6 steps):
$-\frac{\arctan (\sinh (d x+c))}{b^{3} d}+\frac{(a+b) \sinh (d x+c)}{4 a b d\left(a+(a+b) \sinh (d x+c)^{2}\right)^{2}}-\frac{(4 a-3 b)(a+b) \sinh (d x+c)}{8 a^{2} b^{2} d\left(a+(a+b) \sinh (d x+c)^{2}\right)}$

Result(type ?, 2224 leaves): Display of huge result suppressed!
Problem 42: Result more than twice size of optimal antiderivative.

$$
\int \tanh (d x+c)\left(a+b \tanh (d x+c)^{2}\right)^{2} \mathrm{~d} x
$$

Optimal(type 3, 53 leaves, 4 steps):

$$
\frac{(a+b)^{2} \ln (\cosh (d x+c))}{d}-\frac{b(a+b) \tanh (d x+c)^{2}}{2 d}-\frac{\left(a+b \tanh (d x+c)^{2}\right)^{2}}{4 d}
$$

Result(type 3, 148 leaves):

$$
\begin{aligned}
& -\frac{\tanh (d x+c)^{4} b^{2}}{4 d}-\frac{a b \tanh (d x+c)^{2}}{d}-\frac{\tanh (d x+c)^{2} b^{2}}{2 d}-\frac{\ln (\tanh (d x+c)-1) a^{2}}{2 d}-\frac{\ln (\tanh (d x+c)-1) b a}{d}-\frac{\ln (\tanh (d x+c)-1) b^{2}}{2 d} \\
& \quad-\frac{\ln (\tanh (d x+c)+1) a^{2}}{2 d}-\frac{\ln (\tanh (d x+c)+1) b a}{d}-\frac{\ln (\tanh (d x+c)+1) b^{2}}{2 d}
\end{aligned}
$$

Problem 43: Result more than twice size of optimal antiderivative.

$$
\int\left(a+b \tanh (d x+c)^{2}\right)^{2} \mathrm{~d} x
$$

Optimal(type 3, 41 leaves, 4 steps):

$$
(a+b)^{2} x-\frac{b(2 a+b) \tanh (d x+c)}{d}-\frac{b^{2} \tanh (d x+c)^{3}}{3 d}
$$

Result(type 3, 143 leaves):

$$
\begin{aligned}
& -\frac{b^{2} \tanh (d x+c)^{3}}{3 d}-\frac{2 \tanh (d x+c) a b}{d}-\frac{b^{2} \tanh (d x+c)}{d}-\frac{\ln (\tanh (d x+c)-1) a^{2}}{2 d}-\frac{\ln (\tanh (d x+c)-1) b a}{d}-\frac{\ln (\tanh (d x+c)-1) b^{2}}{2 d} \\
& \quad+\frac{\ln (\tanh (d x+c)+1) a^{2}}{2 d}+\frac{\ln (\tanh (d x+c)+1) b a}{d}+\frac{\ln (\tanh (d x+c)+1) b^{2}}{2 d}
\end{aligned}
$$

Problem 46: Result more than twice size of optimal antiderivative.

$$
\int \tanh (d x+c)^{4}\left(a+b \tanh (d x+c)^{2}\right)^{3} \mathrm{~d} x
$$

Optimal(type 3, 106 leaves, 4 steps):
$(a+b)^{3} x-\frac{(a+b)^{3} \tanh (d x+c)}{d}-\frac{(a+b)^{3} \tanh (d x+c)^{3}}{3 d}-\frac{b\left(3 a^{2}+3 b a+b^{2}\right) \tanh (d x+c)^{5}}{5 d}-\frac{b^{2}(3 a+b) \tanh (d x+c)^{7}}{7 d}-\frac{b^{3} \tanh (d x+c)^{9}}{9 d}$
Result(type 3, 364 leaves):
$-\frac{3 a b^{2} \tanh (d x+c)}{d}-\frac{3 a^{2} b \tanh (d x+c)}{d}-\frac{a^{2} b \tanh (d x+c)^{3}}{d}-\frac{3 \tanh (d x+c)^{7} a b^{2}}{7 d}-\frac{3 \tanh (d x+c)^{5} a^{2} b}{5 d}-\frac{3 a b^{2} \tanh (d x+c)^{5}}{5 d}$
$-\frac{a^{3} \tanh (d x+c)}{d}-\frac{\tanh (d x+c) b^{3}}{d}-\frac{b^{3} \tanh (d x+c)^{3}}{3 d}-\frac{\ln (\tanh (d x+c)-1) a^{3}}{2 d}-\frac{3 \ln (\tanh (d x+c)-1) a^{2} b}{2 d}$
$-\frac{3 \ln (\tanh (d x+c)-1) a b^{2}}{2 d}-\frac{\ln (\tanh (d x+c)-1) b^{3}}{2 d}-\frac{\tanh (d x+c)^{3} a^{3}}{3 d}-\frac{b^{3} \tanh (d x+c)^{7}}{7 d}-\frac{b^{3} \tanh (d x+c)^{5}}{5 d}+\frac{\ln (\tanh (d x+c)+1) a^{3}}{2 d}$
$+\frac{3 \ln (\tanh (d x+c)+1) a^{2} b}{2 d}+\frac{3 \ln (\tanh (d x+c)+1) a b^{2}}{2 d}+\frac{\ln (\tanh (d x+c)+1) b^{3}}{2 d}-\frac{a b^{2} \tanh (d x+c)^{3}}{d}-\frac{b^{3} \tanh (d x+c)^{9}}{9 d}$

Problem 49: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{coth}(d x+c)^{3}}{\left(a+b \tanh (d x+c)^{2}\right)^{2}} d x
$$

Optimal (type 3, 118 leaves, 4 steps):

$$
-\frac{\operatorname{coth}(d x+c)^{2}}{2 a^{2} d}+\frac{\ln (\cosh (d x+c))}{(a+b)^{2} d}+\frac{(a-2 b) \ln (\tanh (d x+c))}{a^{3} d}+\frac{b^{2}(3 a+2 b) \ln \left(a+b \tanh (d x+c)^{2}\right)}{2 a^{3}(a+b)^{2} d}-\frac{b^{2}}{2 a^{2}(a+b) d\left(a+b \tanh (d x+c)^{2}\right)}
$$

Result(type 3, 382 leaves):

$$
-\frac{2 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right) b}{d a^{3}}-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}{d(a+b)^{2}}
$$

Problem 50: Result more than twice size of optimal antiderivative.

$$
\int \frac{\tanh (d x+c)^{6}}{\left(a+b \tanh (d x+c)^{2}\right)^{3}} d x
$$

Optimal(type 3, 130 leaves, 6 steps):

$$
\frac{x}{(a+b)^{3}}-\frac{\left(3 a^{2}+10 b a+15 b^{2}\right) \arctan \left(\frac{\sqrt{b} \tanh (d x+c)}{\sqrt{a}}\right) \sqrt{a}}{8 b^{5 / 2}(a+b)^{3} d}+\frac{a \tanh (d x+c)^{3}}{4 b(a+b) d\left(a+b \tanh (d x+c)^{2}\right)^{2}}+\frac{a(3 a+7 b) \tanh (d x+c)}{8 b^{2}(a+b)^{2} d\left(a+b \tanh (d x+c)^{2}\right)}
$$

Result(type 3, 351 leaves):
$-\frac{\ln (\tanh (d x+c)-1)}{2 d(a+b)^{3}}+\frac{\ln (\tanh (d x+c)+1)}{2 d(a+b)^{3}}+\frac{5 a^{3} \tanh (d x+c)^{3}}{8 d(a+b)^{3}\left(a+b \tanh (d x+c)^{2}\right)^{2} b}+\frac{7 a^{2} \tanh (d x+c)^{3}}{4 d(a+b)^{3}\left(a+b \tanh (d x+c)^{2}\right)^{2}}$

$$
\begin{aligned}
& -\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{8 d a^{2}}-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}{d(a+b)^{2}}+\frac{2 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{d a^{2}(a+b)^{2}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}} \\
& +\frac{2 b^{4} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{d a^{3}(a+b)^{2}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)} \\
& +\frac{3 b^{2} \ln \left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)}{2 d a^{2}(a+b)^{2}} \\
& +\frac{b^{3} \ln \left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)}{d a^{3}(a+b)^{2}}-\frac{1}{8 d a^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}+\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right)}{d a^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{9 a b \tanh (d x+c)^{3}}{8 d(a+b)^{3}\left(a+b \tanh (d x+c)^{2}\right)^{2}}+\frac{3 a^{4} \tanh (d x+c)}{8 d(a+b)^{3}\left(a+b \tanh (d x+c)^{2}\right)^{2} b^{2}}+\frac{5 a^{3} \tanh (d x+c)}{4 d(a+b)^{3}\left(a+b \tanh (d x+c)^{2}\right)^{2} b} \\
& +\frac{7 a^{2} \tanh (d x+c)}{8 d(a+b)^{3}\left(a+b \tanh (d x+c)^{2}\right)^{2}}-\frac{3 a^{3} \arctan \left(\frac{\tanh (d x+c) b}{\sqrt{b a}}\right)}{8 d(a+b)^{3} b^{2} \sqrt{b a}}-\frac{5 a^{2} \arctan \left(\frac{\tanh (d x+c) b}{\sqrt{b a}}\right)}{4 d(a+b)^{3} b \sqrt{b a}}-\frac{15 a \arctan \left(\frac{\tanh (d x+c) b}{\sqrt{b a}}\right)}{8 d(a+b)^{3} \sqrt{b a}}
\end{aligned}
$$

Problem 51: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{coth}(d x+c)}{\left(a+b \tanh (d x+c)^{2}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 132 leaves, 4 steps):
$\frac{\ln (\cosh (d x+c))}{(a+b)^{3} d}+\frac{\ln (\tanh (d x+c))}{a^{3} d}-\frac{b\left(3 a^{2}+3 b a+b^{2}\right) \ln \left(a+b \tanh (d x+c)^{2}\right)}{2 a^{3}(a+b)^{3} d}+\frac{b}{4 a(a+b) d\left(a+b \tanh (d x+c)^{2}\right)^{2}}$

$$
+\frac{b(2 a+b)}{2 a^{2}(a+b)^{2} d\left(a+b \tanh (d x+c)^{2}\right)}
$$

Result(type 3, 951 leaves):

$$
\begin{aligned}
& -\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}{d(a+b)^{3}}-\frac{6 b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}}{d(a+b)^{3}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}} \\
& -\frac{10 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}}{d(a+b)^{3} a\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}} \\
& - \\
& -\frac{d b^{4} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}}{d(a+b)^{3} a^{2}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}} \\
& \\
& \left.\left.-\frac{d(a+b)^{3}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}\right.}{2}+\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2} \\
& - \\
& \\
&
\end{aligned}
$$

$$
\begin{aligned}
& 40 b^{4} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} \\
& \overline{d(a+b)^{3} a^{2}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}} \\
& 12 b^{5} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} \\
& d(a+b)^{3} a^{3}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2} \\
& 6 b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} \\
& d(a+b)^{3}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2} \\
& 10 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} \\
& d(a+b)^{3} a\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2} \\
& 4 b^{4} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} \\
& d(a+b)^{3} a^{2}\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2} \\
& -\frac{3 b \ln \left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)}{2)^{3}} \\
& -\frac{3 b^{2} \ln \left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)}{2 d(a+b)^{3} a^{2}} \\
& -\frac{b^{3} \ln \left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)}{2 d(a+b)^{3} a^{3}}+\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right)}{d a^{3}}-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}{d(a+b)^{3}}
\end{aligned}
$$

Problem 52: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{coth}(d x+c)^{4}}{\left(a+b \tanh (d x+c)^{2}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 210 leaves, 8 steps):
$\frac{x}{(a+b)^{3}}+\frac{b^{5 / 2}\left(63 a^{2}+90 b a+35 b^{2}\right) \arctan \left(\frac{\sqrt{b} \tanh (d x+c)}{\sqrt{a}}\right)}{8 a^{9 / 2}(a+b)^{3} d}-\frac{\left(8 a^{3}-8 a^{2} b-55 a b^{2}-35 b^{3}\right) \operatorname{coth}(d x+c)}{8 a^{4}(a+b)^{2} d}$
$-\frac{\left(8 a^{2}+55 b a+35 b^{2}\right) \operatorname{coth}(d x+c)^{3}}{24 a^{3}(a+b)^{2} d}+\frac{b \operatorname{coth}(d x+c)^{3}}{4 a(a+b) d\left(a+b \tanh (d x+c)^{2}\right)^{2}}+\frac{b(11 a+7 b) \operatorname{coth}(d x+c)^{3}}{8 a^{2}(a+b)^{2} d\left(a+b \tanh (d x+c)^{2}\right)}$
Result(type ?, 2138 leaves): Display of huge result suppressed!
Problem 55: Result more than twice size of optimal antiderivative.

$$
\int \sqrt{a+b \tanh (x)^{2}} \tanh (x)^{5} \mathrm{~d} x
$$

Optimal (type 3, 71 leaves, 7 steps):

$$
\operatorname{arctanh}\left(\frac{\sqrt{a+b \tanh (x)^{2}}}{\sqrt{a+b}}\right) \sqrt{a+b}-\sqrt{a+b \tanh (x)^{2}}+\frac{(a-b)\left(a+b \tanh (x)^{2}\right)^{3 / 2}}{3 b^{2}}-\frac{\left(a+b \tanh (x)^{2}\right)^{5 / 2}}{5 b^{2}}
$$

Result(type 3, 287 leaves):
$-\frac{\left(a+b \tanh (x)^{2}\right)^{3 / 2}}{3 b}-\frac{\tanh (x)^{2}\left(a+b \tanh (x)^{2}\right)^{3 / 2}}{5 b}+\frac{2 a\left(a+b \tanh (x)^{2}\right)^{3 / 2}}{15 b^{2}}-\frac{\sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}}{2}$

2

$$
+\frac{\sqrt{a+b} \ln \left(\frac{2 a+2 b+2(\tanh (x)-1) b+2 \sqrt{a+b} \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}}{\tanh (x)-1}\right)}{2}
$$

$-\frac{\sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b}}{2}+\frac{\sqrt{b} \ln \left(\frac{(1+\tanh (x)) b-b}{\sqrt{b}}+\sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b}\right)}{2}$
$+\frac{\sqrt{a+b} \ln \left(\frac{2 a+2 b-2(1+\tanh (x)) b+2 \sqrt{a+b} \sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b}}{1+\tanh (x)}\right)}{2}$

Problem 56: Unable to integrate problem.

$$
\int \operatorname{coth}(x)^{4} \sqrt{a+b \tanh (x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 64 leaves, 6 steps):

$$
\operatorname{arctanh}\left(\frac{\sqrt{a+b} \tanh (x)}{\sqrt{a+b \tanh (x)^{2}}}\right) \sqrt{a+b}-\frac{(3 a+b) \operatorname{coth}(x) \sqrt{a+b \tanh (x)^{2}}}{3 a}-\frac{\operatorname{coth}(x)^{3} \sqrt{a+b \tanh (x)^{2}}}{3}
$$

Result(type 8, 17 leaves):

$$
\int \operatorname{coth}(x)^{4} \sqrt{a+b \tanh (x)^{2}} \mathrm{~d} x
$$

Problem 57: Result more than twice size of optimal antiderivative.

$$
\int \tanh (x)^{2}\left(a+b \tanh (x)^{2}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 101 leaves, 8 steps):

$$
(a+b)^{3 / 2} \operatorname{arctanh}\left(\frac{\sqrt{a+b} \tanh (x)}{\sqrt{a+b \tanh (x)^{2}}}\right)-\frac{\left(3 a^{2}+12 b a+8 b^{2}\right) \operatorname{arctanh}\left(\frac{\sqrt{b} \tanh (x)}{\sqrt{a+b \tanh (x)^{2}}}\right)}{8 \sqrt{b}}-\frac{(5 a+4 b) \sqrt{a+b \tanh (x)^{2}} \tanh (x)}{8}
$$

$$
-\frac{b \sqrt{a+b \tanh (x)^{2}} \tanh (x)^{3}}{4}
$$

Result(type 3, 632 leaves):
$-\frac{\tanh (x)\left(a+b \tanh (x)^{2}\right)^{3 / 2}}{4}-\frac{3 a \tanh (x) \sqrt{a+b \tanh (x)^{2}}}{8}-\frac{3 a^{2} \ln \left(\tanh (x) \sqrt{b}+\sqrt{a+b \tanh (x)^{2}}\right)}{8 \sqrt{b}}$

$$
-\frac{\left(b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b\right)^{3 / 2}}{6}-\frac{b \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b} \tanh (x)}{4}
$$

$$
-\frac{3 \sqrt{b} \ln \left(\frac{(\tanh (x)-1) b+b}{\sqrt{b}}+\sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}\right) a}{4}
$$

$$
+\frac{\ln \left(\frac{\left.2 a+2 b+2(\tanh (x)-1) b+2 \sqrt{a+b} \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}\right) \sqrt{a+b} a}{\tanh (x)-1}\right.}{2}
$$

$$
-\frac{\sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b} a}{2}
$$

$$
+\frac{\ln \left(\frac{\left.2 a+2 b+2(\tanh (x)-1) b+2 \sqrt{a+b} \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}\right) \sqrt{a+b} b}{\tanh (x)-1}\right.}{2}
$$

$$
-\frac{b^{3 / 2} \ln \left(\frac{(\tanh (x)-1) b+b}{\sqrt{b}}+\sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}\right)}{2}-\frac{\sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b} b}{2}
$$

$$
+\frac{\left(b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b\right)^{3 / 2}}{6}-\frac{b \sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b} \tanh (x)}{4}
$$

$$
\begin{aligned}
& \left.-\frac{3 \sqrt{b} \ln \left(\frac{(1+\tanh (x)) b-b}{\sqrt{b}}+\sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b}\right) a}{4}\right) \\
& \left.-\frac{\ln \left(\frac{\left.2 a+2 b-2(1+\tanh (x)) b+2 \sqrt{a+b} \sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b}\right) \sqrt{a+b} a}{1+\tanh (x)}\right.}{2}\right) \\
& +\frac{\sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b} a}{2}-\frac{\ln \left(\frac{(1+\tanh (x)) b-b}{\sqrt{b}}+\sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b}\right) b^{3} / 2}{2} \\
& -\frac{\ln \left(\frac{\left.2 a+2 b-2(1+\tanh (x)) b+2 \sqrt{a+b} \sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b}\right) \sqrt{a+b} b}{1+\tanh (x)}\right.}{2} \\
& +\frac{\sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b} b}{2}
\end{aligned}
$$

Problem 58: Result more than twice size of optimal antiderivative.

$$
\int \tanh (x)\left(a+b \tanh (x)^{2}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 51 leaves, 6 steps):

$$
(a+b)^{3 / 2} \operatorname{arctanh}\left(\frac{\sqrt{a+b \tanh (x)^{2}}}{\sqrt{a+b}}\right)-(a+b) \sqrt{a+b \tanh (x)^{2}}-\frac{\left(a+b \tanh (x)^{2}\right)^{3 / 2}}{3}
$$

Result(type 3, 577 leaves):

$$
-\frac{\left(b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b\right)^{3 / 2}}{6}-\frac{b \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b} \tanh (x)}{4}
$$

$$
-\frac{3 \sqrt{b} \ln \left(\frac{(\tanh (x)-1) b+b}{\sqrt{b}}+\sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}\right) a}{4}
$$

$$
+\frac{\ln \left(\frac{\left.2 a+2 b+2(\tanh (x)-1) b+2 \sqrt{a+b} \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}\right) \sqrt{a+b} a}{\tanh (x)-1}\right.}{2}
$$

$$
-\frac{\sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b} a}{2}
$$

$$
+\frac{\ln \left(\frac{\left.2 a+2 b+2(\tanh (x)-1) b+2 \sqrt{a+b} \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}\right) \sqrt{a+b} b}{\tanh (x)-1}\right.}{2}
$$

$$
\begin{aligned}
& -\frac{b^{3 / 2} \ln \left(\frac{(\tanh (x)-1) b+b}{\sqrt{b}}+\sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}\right)}{2}-\frac{\sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b} b}{2} \\
& -\frac{\left(b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b\right)^{3 / 2}}{6}+\frac{b \sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b} \tanh (x)}{4} \\
& \left.+\frac{3 \sqrt{b} \ln \left(\frac{(1+\tanh (x)) b-b}{\sqrt{b}}+\sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b}\right) a}{4}\right) \\
& \left.+\frac{\ln \left(\frac{\left.2 a+2 b-2(1+\tanh (x)) b+2 \sqrt{a+b} \sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b}\right) \sqrt{a+b} a}{1+\tanh (x)}\right.}{2}\right) \\
& -\frac{\sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b} a}{2}+\frac{\ln \left(\frac{(1+\tanh (x)) b-b}{\sqrt{b}}+\sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b}\right) b^{3} / 2}{2} \\
& +\frac{\ln \left(\frac{\left.2 a+2 b-2(1+\tanh (x)) b+2 \sqrt{a+b} \sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b}\right) \sqrt{a+b} b}{1+\tanh (x)}\right.}{2} \\
& +\frac{\sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b b}}{2}
\end{aligned}
$$

Problem 59: Result more than twice size of optimal antiderivative.

$$
\int \sqrt{1+\tanh (x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 25 leaves, 5 steps):

$$
-\operatorname{arcsinh}(\tanh (x))+\operatorname{arctanh}\left(\frac{\sqrt{2} \tanh (x)}{\sqrt{1+\tanh (x)^{2}}}\right) \sqrt{2}
$$

Result(type 3, 96 leaves):

$$
\begin{aligned}
& -\frac{\sqrt{(\tanh (x)-1)^{2}+2 \tanh (x)}}{2}-\operatorname{arcsinh}(\tanh (x))+\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{(2+2 \tanh (x)) \sqrt{2}}{4 \sqrt{(\tanh (x)-1)^{2}+2 \tanh (x)}}\right)}{2}+\frac{\sqrt{(1+\tanh (x))^{2}-2 \tanh (x)}}{2} \\
& \quad-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{(2-2 \tanh (x)) \sqrt{2}}{4 \sqrt{(1+\tanh (x))^{2}-2 \tanh (x)}}\right)}{2}
\end{aligned}
$$

[^0]$$
\int\left(-1-\tanh (x)^{2}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 53 leaves, 7 steps):

$$
-\frac{5 \arctan \left(\frac{\tanh (x)}{\sqrt{-1-\tanh (x)^{2}}}\right)}{2}+2 \arctan \left(\frac{\sqrt{2} \tanh (x)}{\sqrt{-1-\tanh (x)^{2}}}\right) \sqrt{2}+\frac{\sqrt{-1-\tanh (x)^{2}} \tanh (x)}{2}
$$

Result(type 3, 210 leaves):

$$
\begin{aligned}
& -\frac{\left(-(\tanh (x)-1)^{2}-2 \tanh (x)\right)^{3 / 2}}{6}+\frac{\tanh (x) \sqrt{-(\tanh (x)-1)^{2}-2 \tanh (x)}}{4}-\frac{5 \arctan \left(\frac{\tanh (x)}{\sqrt{-(\tanh (x)-1)^{2}-2 \tanh (x)}}\right)}{4} \\
& \quad+\sqrt{-(\tanh (x)-1)^{2}-2 \tanh (x)}-\sqrt{2} \arctan \left(\frac{(-2 \tanh (x)-2) \sqrt{2}}{4 \sqrt{-(\tanh (x)-1)^{2}-2 \tanh (x)}}\right)+\frac{\left(-(1+\tanh (x))^{2}+2 \tanh (x)\right)^{3 / 2}}{6} \\
& \quad+\frac{\tanh (x) \sqrt{-(1+\tanh (x))^{2}+2 \tanh (x)}}{4}-\frac{5 \arctan \left(\frac{\tanh (x)}{\sqrt{-(1+\tanh (x))^{2}+2 \tanh (x)}}\right)}{4}-\sqrt{-(1+\tanh (x))^{2}+2 \tanh (x)} \\
& \quad+\sqrt{2} \arctan \left(\frac{(-2+2 \tanh (x)) \sqrt{2}}{4 \sqrt{-(1+\tanh (x))^{2}+2 \tanh (x)}}\right)
\end{aligned}
$$

Problem 61: Result more than twice size of optimal antiderivative.

$$
\int \frac{\tanh (x)^{4}}{\sqrt{a+b \tanh (x)^{2}}} \mathrm{~d} x
$$

Optimal(type 3, 70 leaves, 7 steps):

$$
\frac{(a-2 b) \operatorname{arctanh}\left(\frac{\sqrt{b} \tanh (x)}{\sqrt{a+b \tanh (x)^{2}}}\right)}{2 b^{3 / 2}}+\frac{\operatorname{arctanh}\left(\frac{\sqrt{a+b} \tanh (x)}{\sqrt{a+b \tanh (x)^{2}}}\right)}{\sqrt{a+b}}-\frac{\sqrt{a+b \tanh (x)^{2}} \tanh (x)}{2 b}
$$

Result(type 3, 177 leaves):

$$
-\frac{\ln \left(\tanh (x) \sqrt{b}+\sqrt{a+b \tanh (x)^{2}}\right)}{\sqrt{b}}-\frac{\sqrt{a+b \tanh (x)^{2}} \tanh (x)}{2 b}+\frac{a \ln \left(\tanh (x) \sqrt{b}+\sqrt{a+b \tanh (x)^{2}}\right)}{2 b^{3 / 2}}
$$

$$
+\frac{\ln \left(\frac{2 a+2 b+2(\tanh (x)-1) b+2 \sqrt{a+b} \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}}{\tanh (x)-1}\right)}{}
$$

$$
2 \sqrt{a+b}
$$

$$
-\frac{\ln \left(\frac{2 a+2 b-2(1+\tanh (x)) b+2 \sqrt{a+b} \sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b}}{1+\tanh (x)}\right)}{2 \sqrt{a+b}}
$$

Problem 62: Result more than twice size of optimal antiderivative.

$$
\int \frac{\tanh (x)^{3}}{\sqrt{a+b \tanh (x)^{2}}} \mathrm{~d} x
$$

Optimal(type 3, 39 leaves, 5 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{\sqrt{a+b \tanh (x)^{2}}}{\sqrt{a+b}}\right)}{\sqrt{a+b}}-\frac{\sqrt{a+b \tanh (x)^{2}}}{b}
$$

Result(type 3, 128 leaves):
$-\frac{\sqrt{a+b \tanh (x)^{2}}}{b}+\frac{\ln \left(\frac{2 a+2 b+2(\tanh (x)-1) b+2 \sqrt{a+b} \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}}{\tanh (x)-1}\right)}{2 \sqrt{a+b}}$

Problem 63: Result more than twice size of optimal antiderivative.

$$
\int \frac{\tanh (x)}{\sqrt{a+b \tanh (x)^{2}}} \mathrm{~d} x
$$

Optimal(type 3, 23 leaves, 4 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{\sqrt{a+b \tanh (x)^{2}}}{\sqrt{a+b}}\right)}{\sqrt{a+b}}
$$

Result(type 3, 113 leaves):
$\frac{\ln \left(\frac{\left.2 a+2 b+2(\tanh (x)-1) b+2 \sqrt{a+b} \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}\right)}{\tanh (x)-1}\right)}{2 \sqrt{a+b}}$

Problem 64: Result more than twice size of optimal antiderivative.

$$
\int \frac{\tanh (x)^{5}}{\left(a+b \tanh (x)^{2}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 62 leaves, 6 steps):

Result (type 3, 321 leaves):
$\frac{1}{b \sqrt{a+b \tanh (x)^{2}}}-\frac{\tanh (x)^{2}}{b \sqrt{a+b \tanh (x)^{2}}}-\frac{2 a}{b^{2} \sqrt{a+b \tanh (x)^{2}}}-\frac{1}{2(a+b) \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}}$
$+\frac{b(2(\tanh (x)-1) b+2 b)}{(a+b)\left(4 b(a+b)-4 b^{2}\right) \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}}$
$+\frac{\ln \left(\frac{\left.2 a+2 b+2(\tanh (x)-1) b+2 \sqrt{a+b} \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}\right)}{\tanh (x)-1}\right)}{2(a+b)^{3 / 2}}$
$-\frac{1}{}-\frac{b(2(1+\tanh (x)) b-2 b)}{}$
$2(a+b) \sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b} \quad(a+b)\left(4 b(a+b)-4 b^{2}\right) \sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b}$
$+\frac{\ln \left(\frac{\left.2 a+2 b-2(1+\tanh (x)) b+2 \sqrt{a+b} \sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b}\right)}{1+\tanh (x)}\right)}{2(a+b)^{3 / 2}}$

Problem 65: Result more than twice size of optimal antiderivative.

$$
\int \frac{\tanh (x)^{4}}{\left(a+b \tanh (x)^{2}\right)^{3 / 2}} d x
$$

Optimal(type 3, 70 leaves, 7 steps):

$$
-\frac{\operatorname{arctanh}\left(\frac{\sqrt{b} \tanh (x)}{\sqrt{a+b \tanh (x)^{2}}}\right)}{b^{3 / 2}}+\frac{\operatorname{arctanh}\left(\frac{\sqrt{a+b} \tanh (x)}{\sqrt{a+b \tanh (x)^{2}}}\right)}{(a+b)^{3 / 2}}+\frac{a \tanh (x)}{b(a+b) \sqrt{a+b \tanh (x)^{2}}}
$$

Result(type 3, 327 leaves):

```
\(-\frac{\tanh (x)}{a \sqrt{a+b \tanh (x)^{2}}}+\frac{\tanh (x)}{b \sqrt{a+b \tanh (x)^{2}}}-\frac{\ln \left(\tanh (x) \sqrt{b}+\sqrt{a+b \tanh (x)^{2}}\right)}{b^{3 / 2}}-\frac{1}{2(a+b) \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}}\)
    \(+\frac{b(2(\tanh (x)-1) b+2 b)}{(a+b)\left(4 b(a+b)-4 b^{2}\right) \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}}\)
    \(+\frac{\ln \left(\frac{\left.2 a+2 b+2(\tanh (x)-1) b+2 \sqrt{a+b} \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}\right)}{\tanh (x)-1}\right)}{2(a+b)^{3 / 2}}\)
    \(+\frac{1}{2(a+b) \sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b}}+\frac{b(2(1+\tanh (x)) b-2 b)}{(a+b)\left(4 b(a+b)-4 b^{2}\right) \sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b}}\)
    \(-\frac{\ln \left(\frac{2 a+2 b-2(1+\tanh (x)) b+2 \sqrt{a+b} \sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b}}{1+\tanh (x)}\right)}{2(a+b)^{3 / 2}}\)
```

Problem 66: Result more than twice size of optimal antiderivative.

$$
\int \frac{\tanh (x)}{\left(a+b \tanh (x)^{2}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 41 leaves, 5 steps):

Result(type 3, 272 leaves):

$-\frac{1}{2(a+b) \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}}+\frac{b(2(\tanh (x)-1) b+2 b)}{(a+b)\left(4 b(a+b)-4 b^{2}\right) \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}}$	
$+\frac{\ln \left(\frac{\left.2 a+2 b+2(\tanh (x)-1) b+2 \sqrt{a+b} \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}\right)}{\tanh (x)-1}\right.}{2(a+b)^{3 / 2}}$	
$-\frac{1}{2(a+b) \sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b}}-\frac{b(2(1+\tanh (x)) b-2 b)}{(a+b)\left(4 b(a+b)-4 b^{2}\right) \sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b}}$	
	$+\frac{\ln \left(\frac{\left.2 a+2 b-2(1+\tanh (x)) b+2 \sqrt{a+b} \sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b}\right)}{1+\tanh (x)}\right.}{2(a+b)^{3 / 2}}$

Problem 67: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(a+b \tanh (x)^{2}\right)^{3 / 2}} d x
$$

Optimal(type 3, 48 leaves, 4 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{\sqrt{a+b} \tanh (x)}{\sqrt{a+b \tanh (x)^{2}}}\right)}{(a+b)^{3 / 2}}+\frac{b \tanh (x)}{a(a+b) \sqrt{a+b \tanh (x)^{2}}}
$$

Result(type 3, 271 leaves):

```
\(-\frac{1}{2(a+b) \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}}+\frac{b(2(\tanh (x)-1) b+2 b)}{(a+b)\left(4 b(a+b)-4 b^{2}\right) \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}}\)
    \(+\frac{\ln \left(\frac{\left.2 a+2 b+2(\tanh (x)-1) b+2 \sqrt{a+b} \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}\right)}{\tanh (x)-1}\right)}{2(a+b)^{3 / 2}}\)
    \(+\frac{1}{2(a+b) \sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b}}+\frac{b(2(1+\tanh (x)) b-2 b)}{(a+b)\left(4 b(a+b)-4 b^{2}\right) \sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b}}\)
\(-\frac{\ln \left(\frac{\left.2 a+2 b-2(1+\tanh (x)) b+2 \sqrt{a+b} \sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b}\right)}{1+\tanh (x)}\right)}{2(a+b)^{3 / 2}}\)
```

Problem 68: Result more than twice size of optimal antiderivative.

$$
\int \frac{\tanh (x)^{5}}{\left(a+b \tanh (x)^{2}\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 72 leaves, 6 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{\sqrt{a+b \tanh (x)^{2}}}{\sqrt{a+b}}\right)}{(a+b)^{5 / 2}}+\frac{a(a+2 b)}{b^{2}(a+b)^{2} \sqrt{a+b \tanh (x)^{2}}}-\frac{a^{2}}{3 b^{2}(a+b)\left(a+b \tanh (x)^{2}\right)^{3 / 2}}
$$

Result(type 3, 468 leaves):

$$
\begin{aligned}
& \frac{1}{3 b\left(a+b \tanh (x)^{2}\right)^{3 / 2}}+\frac{\tanh (x)^{2}}{b\left(a+b \tanh (x)^{2}\right)^{3 / 2}}+\frac{2 a}{3 b^{2}\left(a+b \tanh (x)^{2}\right)^{3 / 2}}-\frac{1}{6(a+b)\left(b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b\right)^{3 / 2}} \\
& +\frac{b \tanh (x)}{6(a+b) a\left(b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b\right)^{3 / 2}}+\frac{b \tanh (x)}{3(a+b) a^{2} \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}} \\
& -\frac{1}{2(a+b)^{2} \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}}+\frac{\tanh (x) b}{2(a+b)^{2} a \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}}
\end{aligned}
$$

```
\(+\frac{\ln \left(\frac{2 a+2 b+2(\tanh (x)-1) b+2 \sqrt{a+b} \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}}{\tanh (x)-1}\right)}{2(a+b)^{5 / 2}}\)
\(-\frac{1}{6(a+b)\left(b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b\right)^{3 / 2}}-\frac{b \tanh (x)}{6(a+b) a\left(b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b\right)^{3 / 2}}\)
\(-\frac{b \tanh (x)}{3(a+b) a^{2} \sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b}}-\frac{1}{2(a+b)^{2} \sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b}}\)
\(-\frac{\tanh (x) b}{}\)
    \(2(a+b)^{2} a \sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b}\)
\(+\frac{\ln \left(\frac{\left.2 a+2 b-2(1+\tanh (x)) b+2 \sqrt{a+b} \sqrt{b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b}\right)}{1+\tanh (x)}\right)}{2(a+b)^{5 / 2}}\)
```

Problem 69: Result more than twice size of optimal antiderivative.

$$
\int \frac{\tanh (x)^{2}}{\left(a+b \tanh (x)^{2}\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 74 leaves, 6 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{\sqrt{a+b} \tanh (x)}{\sqrt{a+b \tanh (x)^{2}}}\right)}{(a+b)^{5 / 2}}-\frac{(2 a-b) \tanh (x)}{3 a(a+b)^{2} \sqrt{a+b \tanh (x)^{2}}}-\frac{\tanh (x)}{3(a+b)\left(a+b \tanh (x)^{2}\right)^{3 / 2}}
$$

Result(type 3, 453 leaves):

$$
\begin{aligned}
& -\frac{\tanh (x)}{3 a\left(a+b \tanh (x)^{2}\right)^{3 / 2}}-\frac{2 \tanh (x)}{3 a^{2} \sqrt{a+b \tanh (x)^{2}}}-\frac{1}{6(a+b)\left(b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b\right)^{3 / 2}} \\
& \quad+\frac{b \tanh (x)}{6(a+b) a\left(b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b\right)^{3 / 2}}+\frac{b \tanh (x)}{3(a+b) a^{2} \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}} \\
& -\frac{1}{2(a+b)^{2} \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}}+\frac{2(a+b)^{2} a \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}}{2(x)} \\
& \quad+\frac{\ln \left(\frac{\left.2 a+2 b+2(\tanh (x)-1) b+2 \sqrt{a+b} \sqrt{b(\tanh (x)-1)^{2}+2(\tanh (x)-1) b+a+b}\right)}{\tanh (x)-1}\right.}{2(a+b)^{5 / 2}} \\
& \quad+\frac{1}{6(a+b)\left(b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b\right)^{3 / 2}}+\frac{b \tanh (x)}{6(a+b) a\left(b(1+\tanh (x))^{2}-2(1+\tanh (x)) b+a+b\right)^{3 / 2}}
\end{aligned}
$$

Problem 71: Result unnecessarily involves higher level functions and more than twice size of optimal antiderivative.

$$
\int \tanh (x)\left(a+b \tanh (x)^{4}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 101 leaves, 9 steps):

$$
\frac{(a+b)^{3 / 2} \operatorname{arctanh}\left(\frac{a+b \tanh (x)^{2}}{\sqrt{a+b} \sqrt{a+b \tanh (x)^{4}}}\right)}{2}-\frac{(3 a+2 b) \operatorname{arctanh}\left(\frac{\sqrt{b} \tanh (x)^{2}}{\sqrt{a+b \tanh (x)^{4}}}\right) \sqrt{b}}{4}-\frac{\sqrt{a+b \tanh (x)^{4}}\left(2 a+2 b+b \tanh (x)^{2}\right)}{4}
$$

$$
-\frac{\left(a+b \tanh (x)^{4}\right)^{3 / 2}}{6}
$$

Result(type 4, 619 leaves):

$$
-\frac{3 \ln \left(2 \sqrt{b} \tanh (x)^{2}+2 \sqrt{a+b \tanh (x)^{4}}\right) \sqrt{b} a}{4}+\frac{b a \operatorname{arctanh}\left(\frac{2 b \tanh (x)^{2}+2 a}{2 \sqrt{a+b} \sqrt{a+b \tanh (x)^{4}}}\right)}{\sqrt{a+b}}
$$

$$
-\frac{\mathrm{I}\left(\frac{7}{5} b a+b^{2}\right) \sqrt{a} \sqrt{1-\frac{\mathrm{I} \sqrt{b} \tanh (x)^{2}}{\sqrt{a}}} \sqrt{1+\frac{\mathrm{I} \sqrt{b} \tanh (x)^{2}}{\sqrt{a}}}\left(\operatorname{EllipticF}\left(\tanh (x) \sqrt{\frac{\mathrm{I} \sqrt{b}}{\sqrt{a}}}, \mathrm{I}\right)-\operatorname{EllipticE}\left(\tanh (x) \sqrt{\frac{\mathrm{I} \sqrt{b}}{\sqrt{a}}}, \mathrm{I}\right)\right)}{}
$$

$$
2 \sqrt{\frac{\mathrm{I} \sqrt{b}}{\sqrt{a}}} \sqrt{a+b \tanh (x)^{4}} \sqrt{b}
$$

$$
-\frac{\mathrm{I}\left(-\frac{7}{5} b a-b^{2}\right) \sqrt{a} \sqrt{1-\frac{\mathrm{I} \sqrt{b} \tanh (x)^{2}}{\sqrt{a}}} \sqrt{1+\frac{\mathrm{I} \sqrt{b} \tanh (x)^{2}}{\sqrt{a}}}\left(\operatorname{EllipticF}\left(\tanh (x) \sqrt{\frac{\mathrm{I} \sqrt{b}}{\sqrt{a}}}, \mathrm{I}\right)-\operatorname{EllipticE}\left(\tanh (x) \sqrt{\frac{\mathrm{I} \sqrt{b}}{\sqrt{a}}}, \mathrm{I}\right)\right)}{}
$$

$$
2 \sqrt{\frac{\mathrm{I} \sqrt{b}}{\sqrt{a}}} \sqrt{a+b \tanh (x)^{4}} \sqrt{b}
$$

$$
\begin{aligned}
& -\frac{\left(-\frac{5}{3} b a-b^{2}\right) \sqrt{1-\frac{\mathrm{I} \sqrt{b} \tanh (x)^{2}}{\sqrt{a}}} \sqrt{1+\frac{\mathrm{I} \sqrt{b} \tanh (x)^{2}}{\sqrt{a}}} \operatorname{EllipticF}\left(\tanh (x) \sqrt{\frac{\mathrm{I} \sqrt{b}}{\sqrt{a}}}, \mathrm{I}\right)}{2 \sqrt{\frac{\mathrm{I} \sqrt{b}}{\sqrt{a}}} \sqrt{a+b \tanh (x)^{4}}} \\
& -\frac{\left(\frac{5}{3} b a+b^{2}\right) \sqrt{1-\frac{\mathrm{I} \sqrt{b} \tanh (x)^{2}}{\sqrt{a}}} \sqrt{1+\frac{\mathrm{I} \sqrt{b} \tanh (x)^{2}}{\sqrt{a}}} \operatorname{EllipticF}\left(\tanh (x) \sqrt{\frac{\mathrm{I} \sqrt{b}}{\sqrt{a}}}, \mathrm{I}\right)}{2 \sqrt{\frac{\mathrm{I} \sqrt{b}}{\sqrt{a}}} \sqrt{a+b \tanh (x)^{4}}}-\frac{\ln \left(2 \sqrt{b} \tanh (x)^{2}+2 \sqrt{a+b \tanh (x)^{4}}\right) b^{3} / 2}{2} \\
& +\frac{a^{2} \operatorname{arctanh}\left(\frac{2 b \tanh (x)^{2}+2 a}{2 \sqrt{a+b} \sqrt{a+b \tanh (x)^{4}}}\right)}{2 \sqrt{a+b}}+\frac{b^{2} \operatorname{arctanh}\left(\frac{2 b \tanh (x)^{2}+2 a}{2 \sqrt{a+b} \sqrt{a+b \tanh (x)^{4}}}\right)}{2 \sqrt{a+b}}-\frac{b \tanh (x)^{4} \sqrt{a+b \tanh (x)^{4}}}{6} \\
& -\frac{b \tanh (x)^{2} \sqrt{a+b \tanh (x)^{4}}}{4}-\frac{2 \sqrt{a+b \tanh (x)^{4} a}}{3}-\frac{b \sqrt{a+b \tanh (x)^{4}}}{2}
\end{aligned}
$$

Summary of Integration Test Results
162 integration problems

A - 76 optimal antiderivatives
B - 66 more than twice size of optimal antiderivatives
C - 2 unnecessarily complex antiderivatives
D - 18 unable to integrate problems
E - O integration timeouts

[^0]: Problem 60: Result more than twice size of optimal antiderivative.

